
LibCST Documentation

Benjamin Woodruff, Jennifer Taylor, Carl Meyer, Jimmy Lai, Ray Zeng

Apr 03, 2024

INTRODUCTION:

1 Why LibCST? 3
1.1 Abstract Syntax Trees (AST) . 3
1.2 Concrete Syntax Trees (CST) . 4
1.3 LibCST . 5

2 Motivation 9
2.1 Exact Representation . 9
2.2 Ease of Traversal . 9
2.3 Ease of Modification . 10
2.4 Well Tested . 10

3 Parsing and Visiting 11
3.1 Parse Source Code . 11
3.2 Build Visitor or Transformer . 12
3.3 Generate Source Code . 14

4 Working with Metadata 17
4.1 Providing Metadata . 17
4.2 Accessing Metadata . 18

5 Scope Analysis 19
5.1 Warn on unused imports and undefined references . 20
5.2 Automatically Remove Unused Import . 21

6 Working with Matchers 23
6.1 Basic Matcher Usage . 23
6.2 Matcher Decorators . 25

7 Working With Codemods 29
7.1 Setting up and Running Codemods . 29
7.2 Writing a Codemod . 30
7.3 Testing Codemods . 31

8 Best Practices 33
8.1 Avoid isinstance when traversing . 33
8.2 Prefer updated_node when modifying trees . 35
8.3 Provide a config when generating code from templates . 36

9 Parsing 37
9.1 Syntax Errors . 39

i

10 Nodes 41
10.1 CSTNode . 41
10.2 Module . 43
10.3 Expressions . 44
10.4 Statements . 63
10.5 Operators . 78
10.6 Miscellaneous . 81
10.7 Whitespace . 82
10.8 Maybe Sentinel . 84

11 Visitors 87
11.1 Visit and Leave Helper Functions . 89
11.2 Traversal Order . 89
11.3 Batched Visitors . 91

12 Metadata 93
12.1 Metadata APIs . 93
12.2 Metadata Providers . 95

13 Matchers 107
13.1 Matcher APIs . 107
13.2 Matcher Types . 112

14 Codemods 121
14.1 Codemod Base . 121
14.2 Execution Interface . 124
14.3 Command-Line Support . 125
14.4 Command-Line Toolkit . 127
14.5 Library of Transforms . 129

15 Helpers 135
15.1 Construction Helpers . 135
15.2 Transformation Helpers . 136
15.3 Traversing Helpers . 136

16 Experimental APIs 137
16.1 Reentrant Code Generation . 137

17 Indices and tables 139

18 Privacy Policy and Terms of Use 141

Index 143

ii

LibCST Documentation

LibCST parses Python 3.0 -> 3.12 source code as a CST tree that keeps all formatting details (comments, whitespaces,
parentheses, etc). It’s useful for building automated refactoring (codemod) applications and linters.

INTRODUCTION: 1

LibCST Documentation

2 INTRODUCTION:

CHAPTER

ONE

WHY LIBCST?

Python’s ast module already provides a syntax tree. Why do we need another?

LibCST creates a compromise between an Abstract Syntax Tree (AST) and a traditional Concrete Syntax Tree (CST).
By carefully reorganizing and naming node types and fields, we’ve created a lossless CST that looks and feels like an
AST.

1.1 Abstract Syntax Trees (AST)

Let’s look at Python’s AST for the following code snippet:

fn(1, 2) # calls fn

ast.Module(
body=[

ast.Expr(
value=ast.Call(

func=ast.Name("fn", ctx=ast.Load()),
args=[ast.Num(n=1), ast.Num(n=2)],
keywords=[],

),
),

],
)

 Name('fn') Load() ctx

 Num(n=1)

 Num(n=2)

Module Exprbody[0] Callvalue

func

args[0]

args[1]

This syntax tree does a great job of preserving the semantics of the original code, and the structure of the tree is
relatively simple.

However, given only the AST, it wouldn’t be possible to reprint the original source code. Like a JPEG, the Abstract
Syntax Tree is lossy.

3

https://www.youtube.com/watch?v=j5nZhf8SjXw

LibCST Documentation

• The comment we left at the line is gone.

• There’s a newline at the end of the file, but the AST doesn’t tell us that. It also doesn’t tell us if it’s \n, \r, or
\r\n.

• We’ve lost some information about the whitespace between the first and second argument.

Abstract Syntax Trees are good for tools like compilers and type checkers where the semantics of code is important,
but the exact syntax isn’t.

1.2 Concrete Syntax Trees (CST)

A popular CST library for Python is lib2to3, which powers tools like 2to3 and Black. Let’s look at the syntax tree it
generates for the same piece of code:

fn(1, 2) # calls fn

Node(
file_input,
children=[

Node(
simple_stmt,
children=[

Node(
power,
children=[

Leaf(NAME, "fn", prefix=""),
Node(

trailer,
children=[

Leaf(LPAR, "(", prefix=""),
Node(

arglist,
children=[

Leaf(NUMBER, "1", prefix=""),
Leaf(COMMA, ",", prefix=""),
Leaf(NUMBER, "2", prefix=" "),

],
),
Leaf(RPAR, ")", prefix=""),

],
),

],
),
Leaf(

NEWLINE,
"\n",
prefix=" # calls fn",

),
],
prefix=""

),
Leaf(ENDMARKER, "", prefix=""),

(continues on next page)

4 Chapter 1. Why LibCST?

https://github.com/python/cpython/tree/master/Lib/lib2to3
https://docs.python.org/3/library/2to3.html
https://github.com/ambv/black

LibCST Documentation

(continued from previous page)

],
prefix="",

)

 ENDMARKER('')

 NAME('fn')

 LPAR('(') NUMBER('1') COMMA(',') NUMBER('2', prefix=' ') RPAR(')')

 NEWLINE('\n', prefix=' # calls fn')

file_input

1

simple_stmt

0

1

power

0

0

trailer

1

0 1 2 3 4

This tree is lossless. It retains enough information to reprint the exact input code by storing whitespace information in
prefix properties. This makes it a “Concrete” Syntax Tree, or CST.

However, much of the semantics of the code is now difficult to understand and extract. lib2to3 presents a tree that
closely matches Python’s grammar which can be hard to manipulate for complex operations.

• Adding or removing a parameter from fn requires careful preservation of COMMA nodes.

• Whitespace and comment ownership is unclear. Deleting nodes could result in invalid generated code.

Concrete Syntax Trees are good for operations that don’t significantly change the tree and tools that do not wish to
change the semantics of the code itself, such as Black.

1.3 LibCST

LibCST takes a compromise between the two formats outlined above. Like a CST, LibCST preserves all whitespace
and can be reprinted exactly. Like an AST, LibCST parses source into nodes that represent the semantics of the code.

fn(1, 2) # calls fn

Module(
body=[

SimpleStatementLine(
body=[

Expr(
value=Call(

func=Name(
value='fn',

(continues on next page)

1.3. LibCST 5

https://docs.python.org/3/reference/grammar.html
https://github.com/ambv/black

LibCST Documentation

(continued from previous page)

lpar=[],
rpar=[],

),
args=[

Arg(
value=Integer(

value='1',
lpar=[],
rpar=[],

),
keyword=None,
equal=MaybeSentinel.DEFAULT,
comma=Comma(

whitespace_before=SimpleWhitespace(
value='',

),
whitespace_after=SimpleWhitespace(

value=' ',
),

),
star='',
whitespace_after_star=SimpleWhitespace(

value='',
),
whitespace_after_arg=SimpleWhitespace(

value='',
),

),
Arg(

value=Integer(
value='2',
lpar=[],
rpar=[],

),
keyword=None,
equal=MaybeSentinel.DEFAULT,
comma=MaybeSentinel.DEFAULT,
star='',
whitespace_after_star=SimpleWhitespace(

value='',
),
whitespace_after_arg=SimpleWhitespace(

value='',
),

),
],
lpar=[],
rpar=[],
whitespace_after_func=SimpleWhitespace(

value='',
),
whitespace_before_args=SimpleWhitespace(

(continues on next page)

6 Chapter 1. Why LibCST?

LibCST Documentation

(continued from previous page)

value='',
),

),
semicolon=MaybeSentinel.DEFAULT,

),
],
leading_lines=[],
trailing_whitespace=TrailingWhitespace(

whitespace=SimpleWhitespace(
value=' ',

),
comment=Comment(

value='# calls fn',
),
newline=Newline(

value=None,
),

),
),

],
header=[],
footer=[],
encoding='utf-8',
default_indent=' ',
default_newline='\n',
has_trailing_newline=True,

)

1.3. LibCST 7

LibCST Documentation

Module

SimpleStatementLine

body[0]

Expr

body[0]

TrailingWhitespace

trailing_whitespace

Call

value

Name

func

Arg

args[0]

Arg

args[1]

 'fn'

value

Integer

value

Comma

comma

 '1'

value

SimpleWhitespace

whitespace_after

 ' '

value

Integer

value

 '2'

value

SimpleWhitespace

whitespace

Comment

comment

 ' '

value

 '# calls fn'

value

LibCST preserves whitespace by parsing it using an internal whitespace parser and assigning it to relevant nodes. This
allows for much more granular whitespace ownership and greatly reduces the amount of work necessary to perform
complex manipulations. Additionally, it is fully typed. A node’s children are well-defined and match the semantics of
Python.

However, this does come with some downsides.

• It is more difficult to implement tools that focus almost exclusively on whitespace on top of LibCST instead
of lib2to3. For example, Black would need to modify whitespace nodes instead of prefix strings, making its
implementation much more complex.

• The equivalent AST for a Python module will usually be simpler. We must preserve whitespace ownership by
assigning it to nodes that make the most sense which requires us to introduce nodes such as Comma.

• Parsing with LibCST will always be slower than Python’s AST due to the extra work needed to assign whitespace
correctly.

Nevertheless, we think that the trade-offs made in LibCST are worthwhile and offer a great deal of flexibility and power.

8 Chapter 1. Why LibCST?

https://github.com/ambv/black

CHAPTER

TWO

MOTIVATION

When designing LibCST, we used the following list of motivations.

2.1 Exact Representation

• Trees should be rewritable. It should always be possible to take a valid python file, parse it to a CST using
LibCST and then write that tree back out exactly, byte for byte. When changing nodes in the tree, changes to the
original source file should be localized to the area represented by the changed portion of the tree. Effectively, for
all valid python inputs, the following equation should be true:

parse_module(some_input).code == some_input

• Nodes should be constructed exactly as written in code. No magic should happen on initialization and all
construction should be explicit. Nodes should directly correlate to the code they represent and vice versa.

2.2 Ease of Traversal

• As flat as possible. There shouldn’t be an AsyncFunction wrapper containing a FunctionDef just because the
grammar specifies it that way. Instead, we should make a FunctionDef node and give it an async attribute. Instead
of representing parenthesis as wrapper nodes, they should be attached to the expressions that they operate on. In
any scenario where we could achieve deduplication of LibCST code through extra layers in the resulting tree, we
will opt for more code in order to make traversal simpler.

• As regular as possible. A module should always have a list of statements, even if that list is empty or only has
one item. Irregularity makes tree inspection more difficult.

• As high-level as possible. The tree should be as close to the Python AST as possible. It should not be necessary
to understand Python syntax in order to traverse the tree correctly. You should not have to know to ignore commas
when traversing a list of parameters for a function. You should not have to use helper functions to traverse or
recognize expressions wrapped in parenthesis. A LibCST node will represent its semantic operation in python
with as little syntactic trivia exposed as possible.

9

LibCST Documentation

2.3 Ease of Modification

• All nodes should be fully typed. A module is a list of statements, not a list of untyped nodes. A function has a
name, parameters and an optional return. It should be clear where to access various attributes of each node and
what are the valid node types that can be used for that attribute.

• Additional runtime (in addition to static types) constraints. It shouldn’t be possible to construct a node that
can’t be serialized correctly or that would result in invalid code. You shouldn’t be able to construct a Name node
with a string that isn’t a valid python identifier. Strong constraints here should allow us to perform multiple
passes safely without serializing and re-parsing the tree after each pass.

• Sane defaults. If I construct a node, I shouldn’t have to supply whitespace, commas or other required syntax
unless I want to. I should be able to treat the node in abstract, specifying only the semantics of the resulting code.

• Reasonably intelligent ownership of whitespace. A statement should own the comments directly above it, and
any trailing comments on the same line. If we delete that statement, the whitespace should disappear with it.

• It should be easy to change a single field in an existing node without needing to modify or fix up adjacent
nodes. Syntactic trivia such as commas or proper spacing between nodes should be children of the node they
logically belong to so that inserting or removing a node does not require modifications to adjacent nodes.

• Reparentable. It should be possible to move or copy a node from one part of the tree easily.

2.4 Well Tested

• All nodes should be fully tested. It should not be possible to break upstream parsing or rendering code with a
change to LibCST. Parsing, rendering and verifying functionality are all tested as completely as possible for all
defined nodes.

10 Chapter 2. Motivation

CHAPTER

THREE

PARSING AND VISITING

LibCST provides helpers to parse source code string as concrete syntax tree. In order to perform static analysis to
identify patterns in the tree or modify the tree programmatically, we can use visitor pattern to traverse the tree. In this
tutorial, we demonstrate a common three-step-workflow to build an automated refactoring (codemod) application:

1. Parse Source Code

2. Build Visitor or Transformer

3. Generate Source Code

3.1 Parse Source Code

LibCST provides various helpers to parse source code as concrete syntax tree: parse_module(),
parse_expression() and parse_statement() (see Parsing for more detail). The default CSTNode repr
provides pretty print formatting for reading the tree easily.

[2]: import libcst as cst

cst.parse_expression("1 + 2")

[2]: BinaryOperation(
left=Integer(

value='1',
lpar=[],
rpar=[],

),
operator=Add(

whitespace_before=SimpleWhitespace(
value=' ',

),
whitespace_after=SimpleWhitespace(

value=' ',
),

),
right=Integer(

value='2',
lpar=[],
rpar=[],

),
lpar=[],

(continues on next page)

11

LibCST Documentation

(continued from previous page)

rpar=[],
)

3.1.1 Example: add typing annotation from pyi stub file to Python source

Python typing annotation was added in Python 3.5. Some Python applications add typing annotations in separate pyi
stub files in order to support old Python versions. When applications decide to stop supporting old Python versions,
they’ll want to automatically copy the type annotation from a pyi file to a source file. Here we demonstrate how to do
that easliy using LibCST. The first step is to parse the pyi stub and source files as trees.

[3]: py_source = '''
class PythonToken(Token):

def __repr__(self):
return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %

self._replace(type=self.type.name))

def tokenize(code, version_info, start_pos=(1, 0)):
"""Generate tokens from a the source code (string)."""
lines = split_lines(code, keepends=True)
return tokenize_lines(lines, version_info, start_pos=start_pos)

'''

pyi_source = '''
class PythonToken(Token):

def __repr__(self) -> str: ...

def tokenize(
code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] = (1, 0)

) -> Generator[PythonToken, None, None]: ...
'''

source_tree = cst.parse_module(py_source)
stub_tree = cst.parse_module(pyi_source)

3.2 Build Visitor or Transformer

For traversing and modifying the tree, LibCST provides Visitor and Transformer classes similar to the ast mod-
ule. To implement a visitor (read only) or transformer (read/write), simply implement a subclass of CSTVisitor
or CSTTransformer (see Visitors for more detail). In the typing example, we need to implement a visitor to collect
typing annotation from the stub tree and a transformer to copy the annotation to the function signature. In the visitor, we
implement visit_FunctionDef to collect annotations. Later in the transformer, we implement leave_FunctionDef
to add the collected annotations.

[4]: from typing import List, Tuple, Dict, Optional

class TypingCollector(cst.CSTVisitor):
def __init__(self):

stack for storing the canonical name of the current function
(continues on next page)

12 Chapter 3. Parsing and Visiting

https://mypy.readthedocs.io/en/latest/cheat_sheet_py3.html
https://docs.python.org/3/library/ast.html#ast.NodeVisitor
https://docs.python.org/3/library/ast.html#ast.NodeVisitor

LibCST Documentation

(continued from previous page)

self.stack: List[Tuple[str, ...]] = []
store the annotations
self.annotations: Dict[

Tuple[str, ...], # key: tuple of canonical class/function name
Tuple[cst.Parameters, Optional[cst.Annotation]], # value: (params, returns)

] = {}

def visit_ClassDef(self, node: cst.ClassDef) -> Optional[bool]:
self.stack.append(node.name.value)

def leave_ClassDef(self, node: cst.ClassDef) -> None:
self.stack.pop()

def visit_FunctionDef(self, node: cst.FunctionDef) -> Optional[bool]:
self.stack.append(node.name.value)
self.annotations[tuple(self.stack)] = (node.params, node.returns)
return (

False
) # pyi files don't support inner functions, return False to stop the traversal.

def leave_FunctionDef(self, node: cst.FunctionDef) -> None:
self.stack.pop()

class TypingTransformer(cst.CSTTransformer):
def __init__(self, annotations):

stack for storing the canonical name of the current function
self.stack: List[Tuple[str, ...]] = []
store the annotations
self.annotations: Dict[

Tuple[str, ...], # key: tuple of canonical class/function name
Tuple[cst.Parameters, Optional[cst.Annotation]], # value: (params, returns)

] = annotations

def visit_ClassDef(self, node: cst.ClassDef) -> Optional[bool]:
self.stack.append(node.name.value)

def leave_ClassDef(
self, original_node: cst.ClassDef, updated_node: cst.ClassDef

) -> cst.CSTNode:
self.stack.pop()
return updated_node

def visit_FunctionDef(self, node: cst.FunctionDef) -> Optional[bool]:
self.stack.append(node.name.value)
return (

False
) # pyi files don't support inner functions, return False to stop the traversal.

def leave_FunctionDef(
self, original_node: cst.FunctionDef, updated_node: cst.FunctionDef

) -> cst.CSTNode:

(continues on next page)

3.2. Build Visitor or Transformer 13

LibCST Documentation

(continued from previous page)

key = tuple(self.stack)
self.stack.pop()
if key in self.annotations:

annotations = self.annotations[key]
return updated_node.with_changes(

params=annotations[0], returns=annotations[1]
)

return updated_node

visitor = TypingCollector()
stub_tree.visit(visitor)
transformer = TypingTransformer(visitor.annotations)
modified_tree = source_tree.visit(transformer)

3.3 Generate Source Code

Generating the source code from a cst tree is as easy as accessing the code attribute on Module. After the code
generation, we often use ufmt to reformate the code to keep a consistent coding style.

[5]: print(modified_tree.code)

class PythonToken(Token):
def __repr__(self) -> str:

return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %
self._replace(type=self.type.name))

def tokenize(code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] = (1,
→˓ 0)
) -> Generator[PythonToken, None, None]:

"""Generate tokens from a the source code (string)."""
lines = split_lines(code, keepends=True)
return tokenize_lines(lines, version_info, start_pos=start_pos)

[6]: # Use difflib to show the changes to verify type annotations were added as expected.
import difflib

print(
"".join(

difflib.unified_diff(py_source.splitlines(1), modified_tree.code.splitlines(1))
)

)

+++
@@ -1,10 +1,11 @@

class PythonToken(Token):
- def __repr__(self):

(continues on next page)

14 Chapter 3. Parsing and Visiting

https://ufmt.omnilib.dev/en/stable/

LibCST Documentation

(continued from previous page)

+ def __repr__(self) -> str:
return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %

self._replace(type=self.type.name))

-def tokenize(code, version_info, start_pos=(1, 0)):
+def tokenize(code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] =␣
→˓(1, 0)
+) -> Generator[PythonToken, None, None]:

"""Generate tokens from a the source code (string)."""
lines = split_lines(code, keepends=True)
return tokenize_lines(lines, version_info, start_pos=start_pos)

For the sake of efficiency, we don’t want to re-write the file when the transformer doesn’t change the source code. We
can use deep_equals() to check whether two trees have the same source code. Note that == checks the identity of
tree object instead of representation.

[7]: if not modified_tree.deep_equals(source_tree):
... # write to file

3.3. Generate Source Code 15

LibCST Documentation

16 Chapter 3. Parsing and Visiting

CHAPTER

FOUR

WORKING WITH METADATA

LibCST handles node metadata in a somewhat unusual manner in order to maintain the immutability of the tree. See
Metadata for the complete documentation.

4.1 Providing Metadata

While it’s possible to write visitors that gather metadata from a tree ad hoc, using the provider interface gives you the
advantage of being able to use dependency declaration to automatically run your providers in other visitors and type
safety. For most cases, you’ll want to extend BatchableMetadataProvider as providers that extend from that class
can be resolved more efficiently in batches.

Here’s an example of a simple metadata provider that marks Name nodes that are function parameters:

[2]: import libcst as cst

class IsParamProvider(cst.BatchableMetadataProvider[bool]):
"""
Marks Name nodes found as a parameter to a function.
"""
def __init__(self) -> None:

super().__init__()
self.is_param = False

def visit_Param(self, node: cst.Param) -> None:
Mark the child Name node as a parameter
self.set_metadata(node.name, True)

def visit_Name(self, node: cst.Name) -> None:
Mark all other Name nodes as not parameters
if not self.get_metadata(type(self), node, False):

self.set_metadata(node, False)

17

LibCST Documentation

4.1.1 Line and Column Metadata

LibCST ships with two built-in providers for line and column metadata. See Position Metadata for more information.

4.2 Accessing Metadata

Once you have a provider, the metadata interface gives you two primary ways of working with your providers. The first is
using the resolve methods provided by MetadataWrapper and the second is through declaring metadata dependencies
on a CSTTransformer or CSTVisitor.

4.2.1 Using the MetadataWrapper

The metadata wrapper class provides a way to associate metadata with a module as well as a simple interface to run
providers. Here’s an example of using a wrapper with the provider we just wrote:

[3]: module = cst.parse_module("x")
wrapper = cst.MetadataWrapper(module)

isparam = wrapper.resolve(IsParamProvider)
x_name_node = wrapper.module.body[0].body[0].value

print(isparam[x_name_node]) # should print False

False

4.2.2 Using Dependency Declaration

The visitors that ship with LibCST can declare metadata providers as dependencies that will be run automatically when
visited by a wrapper. Here is a visitor that prints all names that are function parameters.

[4]: from libcst.metadata import PositionProvider

class ParamPrinter(cst.CSTVisitor):
METADATA_DEPENDENCIES = (IsParamProvider, PositionProvider,)

def visit_Name(self, node: cst.Name) -> None:
Only print out names that are parameters
if self.get_metadata(IsParamProvider, node):

pos = self.get_metadata(PositionProvider, node).start
print(f"{node.value} found at line {pos.line}, column {pos.column}")

module = cst.parse_module("def foo(x):\n y = 1\n return x + y")
wrapper = cst.MetadataWrapper(module)
result = wrapper.visit(ParamPrinter()) # NB: wrapper.visit not module.visit

x found at line 1, column 8

18 Chapter 4. Working with Metadata

CHAPTER

FIVE

SCOPE ANALYSIS

Scope analysis keeps track of assignments and accesses which could be useful for code automatic refactoring. If you’re
not familiar with scope analysis, see Scope Metadata for more detail about scope metadata. This tutorial demonstrates
some use cases of scope analysis. If you’re new to metadata, see Metadata Tutorial to get started. Given source codes,
scope analysis parses all variable Assignment (or a BuiltinAssignment if it’s a builtin) and Access to store in
Scope containers.

Note: The scope analysis only handles local variable name access and cannot handle simple string type annotation
forward references. See Access

Given the following example source code contains a couple of unused imports (f, i, m and n) and undefined variable
references (func_undefined and var_undefined). Scope analysis helps us identifying those unused imports and
undefined variables to automatically provide warnings to developers to prevent bugs while they’re developing.

[2]: source = """\
import a, b, c as d, e as f # expect to keep: a, c as d
from g import h, i, j as k, l as m # expect to keep: h, j as k
from n import o # expect to be removed entirely

a()

def fun():
d()

class Cls:
att = h.something

def __new__(self) -> "Cls":
var = k.method()
func_undefined(var_undefined)

"""

With a parsed Module, we construct a MetadataWrapper object and it provides a resolve() function to resolve
metadata given a metadata provider. ScopeProvider is used here for analysing scope and there are three types of
scopes (GlobalScope, FunctionScope and ClassScope) in this example.

[3]: import libcst as cst

wrapper = cst.metadata.MetadataWrapper(cst.parse_module(source))
scopes = set(wrapper.resolve(cst.metadata.ScopeProvider).values())

(continues on next page)

19

LibCST Documentation

(continued from previous page)

for scope in scopes:
print(scope)

<libcst.metadata.scope_provider.GlobalScope object at 0x7f52da730950>
<libcst.metadata.scope_provider.FunctionScope object at 0x7f52da733230>
<libcst.metadata.scope_provider.ClassScope object at 0x7f52da731940>
<libcst.metadata.scope_provider.FunctionScope object at 0x7f52da731eb0>

5.1 Warn on unused imports and undefined references

To find all unused imports, we iterate through assignments and an assignment is unused when its references is
empty. To find all undefined references, we iterate through accesses (we focus on Import/ImportFrom assignments)
and an access is undefined reference when its referents is empty. When reporting the warning to developer, we’ll
want to report the line number and column offset along with the suggestion to make it more clear. We can get position
information from PositionProvider and print the warnings as follows.

[4]: from collections import defaultdict
from typing import Dict, Union, Set

unused_imports: Dict[Union[cst.Import, cst.ImportFrom], Set[str]] = defaultdict(set)
undefined_references: Dict[cst.CSTNode, Set[str]] = defaultdict(set)
ranges = wrapper.resolve(cst.metadata.PositionProvider)
for scope in scopes:

for assignment in scope.assignments:
node = assignment.node
if isinstance(assignment, cst.metadata.Assignment) and isinstance(

node, (cst.Import, cst.ImportFrom)
):

if len(assignment.references) == 0:
unused_imports[node].add(assignment.name)
location = ranges[node].start
print(

f"Warning on line {location.line:2d}, column {location.column:2d}:␣
→˓Imported name `{assignment.name}` is unused."

)

for access in scope.accesses:
if len(access.referents) == 0:

node = access.node
location = ranges[node].start
print(

f"Warning on line {location.line:2d}, column {location.column:2d}: Name␣
→˓reference `{node.value}` is not defined."

)

Warning on line 1, column 0: Imported name `b` is unused.
Warning on line 1, column 0: Imported name `f` is unused.
Warning on line 2, column 0: Imported name `i` is unused.
Warning on line 2, column 0: Imported name `m` is unused.
Warning on line 3, column 0: Imported name `o` is unused.

(continues on next page)

20 Chapter 5. Scope Analysis

LibCST Documentation

(continued from previous page)

Warning on line 15, column 8: Name reference `func_undefined` is not defined.
Warning on line 15, column 23: Name reference `var_undefined` is not defined.

5.2 Automatically Remove Unused Import

Unused import is a commmon code suggestion provided by lint tool like flake8 F401 imported but unused. Even
though reporting unused import is already useful, with LibCST we can provide automatic fix to remove unused import.
That can make the suggestion more actionable and save developer’s time.

An import statement may import multiple names, we want to remove those unused names from the import statement.
If all the names in the import statement are not used, we remove the entire import. To remove the unused name, we
implement RemoveUnusedImportTransformer by subclassing CSTTransformer. We overwrite leave_Import
and leave_ImportFrom to modify the import statements. When we find the import node in lookup table, we iterate
through all names and keep used names in names_to_keep. If names_to_keep is empty, all names are unused and
we remove the entire import node. Otherwise, we update the import node and just removing partial names.

[5]: class RemoveUnusedImportTransformer(cst.CSTTransformer):
def __init__(

self, unused_imports: Dict[Union[cst.Import, cst.ImportFrom], Set[str]]
) -> None:

self.unused_imports = unused_imports

def leave_import_alike(
self,
original_node: Union[cst.Import, cst.ImportFrom],
updated_node: Union[cst.Import, cst.ImportFrom],

) -> Union[cst.Import, cst.ImportFrom, cst.RemovalSentinel]:
if original_node not in self.unused_imports:

return updated_node
names_to_keep = []
for name in updated_node.names:

asname = name.asname
if asname is not None:

name_value = asname.name.value
else:

name_value = name.name.value
if name_value not in self.unused_imports[original_node]:

names_to_keep.append(name.with_changes(comma=cst.MaybeSentinel.DEFAULT))
if len(names_to_keep) == 0:

return cst.RemoveFromParent()
else:

return updated_node.with_changes(names=names_to_keep)

def leave_Import(
self, original_node: cst.Import, updated_node: cst.Import

) -> cst.Import:
return self.leave_import_alike(original_node, updated_node)

def leave_ImportFrom(
self, original_node: cst.ImportFrom, updated_node: cst.ImportFrom

(continues on next page)

5.2. Automatically Remove Unused Import 21

https://lintlyci.github.io/Flake8Rules/rules/F401.html

LibCST Documentation

(continued from previous page)

) -> cst.ImportFrom:
return self.leave_import_alike(original_node, updated_node)

After the transform, we use .code to generate fixed code and all unused names are fixed as expected! The difflib is
used to show only changed part and only import lines are updated as expected.

[6]: import difflib
fixed_module = wrapper.module.visit(RemoveUnusedImportTransformer(unused_imports))

Use difflib to show the changes to verify unused imports are removed as expected.
print(

"".join(
difflib.unified_diff(source.splitlines(1), fixed_module.code.splitlines(1))

)
)

+++
@@ -1,6 +1,5 @@
-import a, b, c as d, e as f # expect to keep: a, c as d
-from g import h, i, j as k, l as m # expect to keep: h, j as k
-from n import o # expect to be removed entirely
+import a, c as d # expect to keep: a, c as d
+from g import h, j as k # expect to keep: h, j as k

a()

22 Chapter 5. Scope Analysis

CHAPTER

SIX

WORKING WITH MATCHERS

Matchers provide a flexible way of comparing LibCST nodes in order to build more complex transforms. See Matchers
for the complete documentation.

6.1 Basic Matcher Usage

Let’s say you are visiting a LibCST Call node and you want to know if all arguments provided are the literal True
or False. You look at the documentation and see that Call.args is a sequence of Arg, and each Arg.value is a
BaseExpression. In order to verify that each argument is either True or False you would have to first loop over
node.args, and then check isinstance(arg.value, cst.Name) for each arg in the loop before finally checking
arg.value.value in ("True", "False").

Here’s a short example of that in action:

[2]: import libcst as cst

def is_call_with_booleans(node: cst.Call) -> bool:
for arg in node.args:

if not isinstance(arg.value, cst.Name):
This can't be the literal True/False, so bail early.
return False

if cst.ensure_type(arg.value, cst.Name).value not in ("True", "False"):
This is a Name node, but not the literal True/False, so bail.
return False

We got here, so all arguments are literal boolean values.
return True

We can see from a few examples that this does work as intended. However, it is an awful lot of boilerplate that was
fairly cumbersome to write.

[3]: call_1 = cst.Call(
func=cst.Name("foo"),
args=(

cst.Arg(cst.Name("True")),
),

)
is_call_with_booleans(call_1)

[3]: True

23

LibCST Documentation

[4]: call_2 = cst.Call(
func=cst.Name("foo"),
args=(

cst.Arg(cst.Name("None")),
),

)
is_call_with_booleans(call_2)

[4]: False

Let’s try to do a bit better with matchers. We can make a better function that takes advantage of matchers to get rid of
both the instance check and the ensure_type call, like so:

[5]: import libcst.matchers as m

def better_is_call_with_booleans(node: cst.Call) -> bool:
for arg in node.args:

if not m.matches(arg.value, m.Name("True") | m.Name("False")):
Oops, this isn't a True/False literal!
return False

We got here, so all arguments are literal boolean values.
return True

This is a lot shorter and is easier to read as well! We made use of the fact that matchers handles instance checking for
us in a safe way. We also made use of the fact that matchers allows us to concisely express multiple match options with
the use of Python’s or operator. We can also see that it still works on our previous examples:

[6]: better_is_call_with_booleans(call_1)

[6]: True

[7]: better_is_call_with_booleans(call_2)

[7]: False

We still have one more trick up our sleeve though. Matchers don’t just allow us to specify which attributes we want
to match on exactly. It also allows us to specify rules for matching sequences of nodes, like the list of Arg nodes
that appears in Call. Let’s make use of that, turning our original is_call_with_booleans function into a call to
matches():

[8]: def best_is_call_with_booleans(node: cst.Call) -> bool:
return m.matches(

node,
m.Call(

args=(
m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),

),
),

)

24 Chapter 6. Working with Matchers

LibCST Documentation

We’ve turned our original function into a single call to matches(). As an added benefit, the match node can be read
from left to right in a way that makes sense in english: “match any call with zero or more arguments that are the literal
True or False”. As we can see, it works as intended:

[9]: best_is_call_with_booleans(call_1)

[9]: True

[10]: best_is_call_with_booleans(call_2)

[10]: False

6.2 Matcher Decorators

You can already do a lot with just matches(). It lets you define the shape of nodes you want to match and LibCST
takes care of the rest. However, you still need to include a lot of boilerplate into your Visitors in order to identify which
nodes you care about. Matcher Decorators help reduce that boilerplate.

Say you wanted to invert the boolean literals in functions which match the above best_is_call_with_booleans.
You could build something that looks like the following:

[11]: class BoolInverter(cst.CSTTransformer):
def __init__(self) -> None:

self.in_call: int = 0

def visit_Call(self, node: cst.Call) -> None:
if m.matches(node, m.Call(args=(

m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
))):

self.in_call += 1

def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:
if m.matches(original_node, m.Call(args=(

m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
))):

self.in_call -= 1
return updated_node

def leave_Name(self, original_node: cst.Name, updated_node: cst.Name) -> cst.Name:
if self.in_call > 0:

if updated_node.value == "True":
return updated_node.with_changes(value="False")

if updated_node.value == "False":
return updated_node.with_changes(value="True")

return updated_node

We can try it out on a source file to see that it works:

[12]: source = "def some_func(*params: object) -> None:\n pass\n\nsome_func(True, False)\
→˓nsome_func(1, 2, 3)\nsome_func()\n"

(continues on next page)

6.2. Matcher Decorators 25

LibCST Documentation

(continued from previous page)

module = cst.parse_module(source)
print(source)

def some_func(*params: object) -> None:
pass

some_func(True, False)
some_func(1, 2, 3)
some_func()

[13]: new_module = module.visit(BoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

While this works its not super elegant. We have to track where we are in the tree so we know when its safe to invert
boolean literals which means we have to create a constructor and we have to duplicate matching logic. We could refactor
that into a helper like the best_is_call_with_booleans above, but it only makes things so much better.

So, let’s try rewriting it with matcher decorators instead. Note that this includes changing the class we inherit from to
MatcherDecoratableTransformer in order to enable the matcher decorator feature:

[14]: class BetterBoolInverter(m.MatcherDecoratableTransformer):
@m.call_if_inside(m.Call(args=(

m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
)))
def leave_Name(self, original_node: cst.Name, updated_node: cst.Name) -> cst.Name:

if updated_node.value == "True":
return updated_node.with_changes(value="False")

if updated_node.value == "False":
return updated_node.with_changes(value="True")

return updated_node

[15]: new_module = module.visit(BetterBoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

26 Chapter 6. Working with Matchers

LibCST Documentation

Using matcher decorators we successfully removed all of the boilerplate around state tracking! The only thing that
leave_Name needs to concern itself with is the actual business logic of the transform. However, it still needs to check
to see if the value of the node should be inverted. This is because the Call.func is a Name in this case. Let’s use
another matcher decorator to make that problem go away:

[16]: class BestBoolInverter(m.MatcherDecoratableTransformer):
@m.call_if_inside(m.Call(args=(

m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
)))
@m.leave(m.Name("True") | m.Name("False"))
def invert_bool_literal(self, original_node: cst.Name, updated_node: cst.Name) ->␣

→˓cst.Name:
return updated_node.with_changes(value="False" if updated_node.value == "True"␣

→˓else "True")

[17]: new_module = module.visit(BestBoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

That’s it! Instead of using a leave_Name which modifies all Name nodes we instead created a matcher visitor that only
modifies Name nodes with the value of True or False. We decorate that with call_if_inside() to ensure we run
this on Name nodes found inside of function calls that only take boolean literals. Using two matcher decorators we got
rid of all of the state management as well as all of the cases where we needed to handle nodes we weren’t interested in.

6.2. Matcher Decorators 27

LibCST Documentation

28 Chapter 6. Working with Matchers

CHAPTER

SEVEN

WORKING WITH CODEMODS

Codemods are an abstraction on top of LibCST for performing large-scale changes to an entire codebase. See Codemods
for the complete documentation.

7.1 Setting up and Running Codemods

Let’s say you were interested in converting legacy .format() calls to shiny new Python 3.6 f-strings. LibCST ships
with a command-line interface known as libcst.tool. This includes a few provisions for working with codemods
at the command-line. It also includes a library of pre-defined codemods, one of which is a transform that can convert
most .format() calls to f-strings. So, let’s use this to give Python 3.6 f-strings a try.

You might be lucky enough that the defaults for LibCST perfectly match your coding style, but chances are you want to
customize LibCST to your repository. Initialize your repository by running the following command in the root of your
repository and then edit the produced .libcst.codemod.yaml file:

python3 -m libcst.tool initialize .

The file includes provisions for customizing any generated code marker, calling an external code formatter such as
black, blackisting patterns of files you never wish to touch and a list of modules that contain valid codemods that can
be executed. If you want to write and run codemods specific to your repository or organization, you can add an in-repo
module location to the list of modules and LibCST will discover codemods in all locations.

Now that your repository is initialized, let’s have a quick look at what’s currently available for running. Run the
following command from the root of your repository:

python3 -m libcst.tool list

You’ll see several codemods available to you, one of which is convert_format_to_fstring.
ConvertFormatStringCommand. The description to the right of this codemod indicates that it converts .format()
calls to f-strings, so let’s give it a whirl! Execute the codemod from the root of your repository like so:

python3 -m libcst.tool codemod convert_format_to_fstring.ConvertFormatStringCommand .

If you want to try it out on only one file or a specific subdirectory, you can replace the . in the above command
with a relative directory, file, list of directories or list of files. While LibCST is walking through your repository and
codemodding files you will see a progress indicator. If there’s anything the codemod can’t do or any unexpected syntax
errors, you will also see them on your console as it progresses.

If everything works out, you’ll notice that your .format() calls have been converted to f-strings!

29

https://pypi.org/project/black/

LibCST Documentation

7.2 Writing a Codemod

Codemods use the same principles as the rest of LibCST. They take LibCST’s core, metadata and matchers and package
them up as a simple command-line interface. So, anything you can do with LibCST in isolation you can also do with
a codemod.

Let’s say you need to clean up some legacy code which used magic values instead of constants. You’ve already got
a constants module called utils.constants and you want to assume that every reference to a raw string matching
a particular constant should be converted to that constant. For the simplest version of this codemod, you’ll need a
command-line tool that takes as arguments the string to replace and the constant to replace it with. You’ll also need to
ensure that modified modules import the constant itself.

So, you can write something similar to the following:

import argparse
from ast import literal_eval
from typing import Union

import libcst as cst
from libcst.codemod import CodemodContext, VisitorBasedCodemodCommand
from libcst.codemod.visitors import AddImportsVisitor

class ConvertConstantCommand(VisitorBasedCodemodCommand):

Add a description so that future codemodders can see what this does.
DESCRIPTION: str = "Converts raw strings to constant accesses."

@staticmethod
def add_args(arg_parser: argparse.ArgumentParser) -> None:

Add command-line args that a user can specify for running this
codemod.
arg_parser.add_argument(

"--string",
dest="string",
metavar="STRING",
help="String contents that we should look for.",
type=str,
required=True,

)
arg_parser.add_argument(

"--constant",
dest="constant",
metavar="CONSTANT",
help="Constant identifier we should replace strings with.",
type=str,
required=True,

)

def __init__(self, context: CodemodContext, string: str, constant: str) -> None:
Initialize the base class with context, and save our args. Remember, the
"dest" for each argument we added above must match a parameter name in
this init.
super().__init__(context)

(continues on next page)

30 Chapter 7. Working With Codemods

LibCST Documentation

(continued from previous page)

self.string = string
self.constant = constant

def leave_SimpleString(
self, original_node: cst.SimpleString, updated_node: cst.SimpleString

) -> Union[cst.SimpleString, cst.Name]:
if literal_eval(updated_node.value) == self.string:

Check to see if the string matches what we want to replace. If so,
then we do the replacement. We also know at this point that we need
to import the constant itself.
AddImportsVisitor.add_needed_import(

self.context, "utils.constants", self.constant,
)
return cst.Name(self.constant)

This isn't a string we're concerned with, so leave it unchanged.
return updated_node

This codemod is pretty simple. It defines a command-line description, sets up to parse a few required command-
line args, initializes its own member variables with the command-line args that were parsed for it by libcst.tool
codemod and finally replaces any string which matches our string command-line argument with a constant. It also
takes care of adding the import required for the constant to be defined properly.

Cool! Let’s look at the command-line help for this codemod. Let’s assume you saved it as constant_folding.py
inside libcst.codemod.commands. You can get help for the codemod by running the following command:

python3 -m libcst.tool codemod constant_folding.ConvertConstantCommand --help

Notice that along with the default arguments, the --string and --constant arguments are present in the help, and
the command-line description has been updated with the codemod’s description string. You’ll notice that the codemod
also shows up on libcst.tool list.

7.3 Testing Codemods

Instead of iterating on a codemod by running it repeatedly on a codebase and seeing what happens, we can write a
series of unit tests that assert on desired transformations. Given the above constant folding codemod that we wrote, we
can test it with some code similar to the following:

from libcst.codemod import CodemodTest
from libcst.codemod.commands.constant_folding import ConvertConstantCommand

class TestConvertConstantCommand(CodemodTest):

The codemod that will be instantiated for us in assertCodemod.
TRANSFORM = ConvertConstantCommand

def test_noop(self) -> None:
before = """

foo = "bar"
"""
after = """

(continues on next page)

7.3. Testing Codemods 31

LibCST Documentation

(continued from previous page)

foo = "bar"
"""

Verify that if we don't have a valid string match, we don't make
any substitutions.
self.assertCodemod(before, after, string="baz", constant="BAZ")

def test_substitution(self) -> None:
before = """

foo = "bar"
"""
after = """

from utils.constants import BAR

foo = BAR
"""

Verify that if we do have a valid string match, we make a substitution
as well as import the constant.
self.assertCodemod(before, after, string="bar", constant="BAR")

If we save this as test_constant_folding.py inside libcst.codemod.commands.tests then we can execute the
tests with the following line:

python3 -m unittest libcst.codemod.commands.tests.test_constant_folding

That’s all there is to it!

32 Chapter 7. Working With Codemods

CHAPTER

EIGHT

BEST PRACTICES

While there are plenty of ways to interact with LibCST, we recommend some patterns over others. Various best practices
are laid out here along with their justifications.

8.1 Avoid isinstance when traversing

Excessive use of isinstance implies that you should rewrite your check as a matcher or unroll it into a set of visitor
methods. Often, you should make use of ensure_type() to make your type checker aware of a node’s type.

Often it is far easier to use Matchers over explicit instance checks in a transform. Matching against some pattern
and then extracting a value from a node’s child is often easier and far more readable. Unfortunately this clashes with
various type-checkers which do not understand that matches() guarantees a particular set of children. Instead of
instance checks, you should use ensure_type() which can be inlined and nested.

For example, if you have written the following:

def get_identifier_name(node: cst.CSTNode) -> Optional[str]:
if m.matches(node, m.Name()):

assert isinstance(node, cst.Name)
return node.value

return None

You could instead write something like:

def get_identifier_name(node: cst.CSTNode) -> Optional[str]:
return (

cst.ensure_type(node, cst.Name).value
if m.matches(node, m.Name())
else None

)

If you find yourself attempting to manually traverse a tree using isinstance, you can often rewrite your code using
visitor methods instead. Nested instance checks can often be unrolled into visitors methods along with matcher dec-
orators. This may entail adding additional state to your visitor, but the resulting code is far more likely to work after
changes to LibCST itself. For example, if you have written the following:

class CountBazFoobarArgs(cst.CSTVisitor):
"""
Given a set of function names, count how many arguments to those function
calls are the identifiers "baz" or "foobar".
"""

(continues on next page)

33

LibCST Documentation

(continued from previous page)

def __init__(self, functions: Set[str]) -> None:
super().__init__()
self.functions: Set[str] = functions
self.arg_count: int = 0

def visit_Call(self, node: cst.Call) -> None:
See if the call itself is one of our functions we care about
if isinstance(node.func, cst.Name) and node.func.value in self.functions:

Loop through each argument
for arg in node.args:

See if the argument is an identifier matching what we want to count
if isinstance(arg.value, cst.Name) and arg.value.value in {"baz", "foobar

→˓"}:
self.arg_count += 1

You could instead write something like:

class CountBazFoobarArgs(m.MatcherDecoratableVisitor):
"""
Given a set of function names, count how many arguments to those function
calls are the identifiers "baz" or "foobar".
"""

def __init__(self, functions: Set[str]) -> None:
super().__init__()
self.functions: Set[str] = functions
self.arg_count: int = 0
self.call_stack: List[str] = []

def visit_Call(self, node: cst.Call) -> None:
Store all calls in a stack
if m.matches(node.func, m.Name()):

self.call_stack.append(cst.ensure_type(node.func, cst.Name).value)

def leave_Call(self, original_node: cst.Call) -> None:
Pop the latest call off the stack
if m.matches(node.func, m.Name()):

self.call_stack.pop()

@m.visit(m.Arg(m.Name("baz") | m.Name("foobar")))
def _count_args(self, node: cst.Arg) -> None:

See if the most shallow call is one we're interested in, so we can
count the args we care about only in calls we care about.
if self.call_stack[-1] in self.functions:

self.arg_count += 1

While there is more code than the previous example, it is arguably easier to understand and maintain each part of the
code. It is also immune to any future changes to LibCST which change’s the tree shape. Note that LibCST is traversing
the tree completely in both cases, so while the first appears to be faster, it is actually doing the same amount of work
as the second.

34 Chapter 8. Best Practices

LibCST Documentation

8.2 Prefer updated_node when modifying trees

When you are using CSTTransformer to modify a LibCST tree, only return modifications to updated_node. The
original_node parameter on any leave_<Node> method is provided for book-keeping and is guaranteed to be equal
via == and is checks to the node parameter in the corresponding visit_<Node> method. Remember that LibCST
trees are immutable, so the only way to make a modification is to return a new tree. Hence, by the time we get to calling
leave_<Node> methods, we have an updated tree whose children have been modified. Therefore, you should only
return original_node when you want to explicitly discard changes performed on the node’s children.

Say you wanted to rename all function calls which were calling global functions. So, you might write the following:

class FunctionRenamer(cst.CSTTransformer):
def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:

if m.matches(original_node.func, m.Name()):
return original_node.with_changes(

func=cst.Name(
"renamed_" + cst.ensure_type(original_node.func, cst.Name).value

)
)

return original_node

Consider writing instead:

class FunctionRenamer(cst.CSTTransformer):
def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:

if m.matches(updated_node.func, m.Name()):
return updated_node.with_changes(

func=cst.Name(
"renamed_" + cst.ensure_type(updated_node.func, cst.Name).value

)
)

return updated_node

The version that returns modifications to original_node has a subtle bug. Consider the following code snippet:

some_func(1, 2, other_func(3))

Running the recommended transform will return us a new code snippet that looks like this:

renamed_some_func(1, 2, renamed_other_func(3))

However, running the version which modifies original_node will instead return:

renamed_some_func(1, 2, other_func(3))

That’s because the updated_node tree contains the modification to other_func. By returning modifications to
original_node instead of updated_node, we accidentally discarded all the work done deeper in the tree.

8.2. Prefer updated_node when modifying trees 35

LibCST Documentation

8.3 Provide a config when generating code from templates

When generating complex trees it is often far easier to pass a string to parse_statement() or parse_expression()
than it is to manually construct the tree. When using these functions to generate code, you should always use the config
parameter in order to generate code that matches the defaults of the module you are modifying. The Module class even
has a helper attribute config_for_parsing to make it easy to use. This ensures that line endings and indentation are
consistent with the defaults in the module you are adding the code to.

For example, to add a print statement to the end of a module:

module = cst.parse_module(some_code_string)
new_module = module.with_changes(

body=(
*module.body,
cst.parse_statement(

"print('Hello, world!')",
config=module.config_for_parsing,

),
),

)
new_code_string = new_module.code

Leaving out the config parameter means that LibCST will assume some defaults and could result in added code which
is formatted differently than the rest of the module it was added to. In the above example, because we used the config
from the already-parsed example, the print statement will be added with line endings matching the rest of the module.
If we neglect the config parameter, we might accidentally insert a windows line ending into a unix file or vice versa,
depending on what system we ran the code under.

36 Chapter 8. Best Practices

CHAPTER

NINE

PARSING

The parser functions accept source code and an optional configuration object, and will generate CSTNode objects.

parse_module() is the most useful function here, since it accepts the entire contents of a file and returns a new
tree, but parse_expression() and parse_statement() are useful when inserting new nodes into the tree, because
they’re easier to use than the equivalent node constructors.

>>> import libcst as cst
>>> cst.parse_expression("1 + 2")
BinaryOperation(

left=Integer(
value='1',
lpar=[],
rpar=[],

),
operator=Add(

whitespace_before=SimpleWhitespace(
value=' ',

),
whitespace_after=SimpleWhitespace(

value=' ',
),

),
right=Integer(

value='2',
lpar=[],
rpar=[],

),
lpar=[],
rpar=[],

)

libcst.parse_module(source: str | bytes, config: PartialParserConfig = PartialParserConfig())→ Module
Accepts an entire python module, including all leading and trailing whitespace.

If source is bytes, the encoding will be inferred and preserved. If the source is a string, we will default to
assuming UTF-8 encoding if the module is rendered back out to source as bytes. It is recommended that when
calling parse_module() with a string you access the serialized code using Module’s code attribute, and when
calling it with bytes you access the serialized code using Module’s bytes attribute.

libcst.parse_expression(source: str, config: PartialParserConfig = PartialParserConfig())→ BaseExpression
Accepts an expression on a single line. Leading and trailing whitespace is not valid (there’s nowhere to store it

37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

on the expression node). parse_expression() is provided mainly as a convenience function to generate semi-
complex trees from code snippets. If you need to represent an expression exactly, including all leading/trailing
comments, you should instead use parse_module().

libcst.parse_statement(source: str, config: PartialParserConfig = PartialParserConfig())→
SimpleStatementLine | BaseCompoundStatement

Accepts a statement followed by a trailing newline. If a trailing newline is not provided, one will be added.
parse_statement() is provided mainly as a convenience function to generate semi-complex trees from code
snippetes. If you need to represent a statement exactly, including all leading/trailing comments, you should
instead use parse_module().

Leading comments and trailing comments (on the same line) are accepted, but whitespace (or anything else) after
the statement’s trailing newline is not valid (there’s nowhere to store it on the statement node). Note that since
there is nowhere to store leading and trailing comments/empty lines, code rendered out from a parsed statement
using cst.Module([]).code_for_node(statement) will not include leading/trailing comments.

class libcst.PartialParserConfig

An optional object that can be supplied to the parser entrypoints (e.g. parse_module()) to configure the parser.

Unspecified fields will be inferred from the input source code or from the execution environment.

>>> import libcst as cst
>>> tree = cst.parse_module("abc")
>>> tree.bytes
b'abc'
>>> # override the default utf-8 encoding
... tree = cst.parse_module("abc", cst.PartialParserConfig(encoding="utf-32"))
>>> tree.bytes
b'\xff\xfe\x00\x00a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'

python_version: str | AutoConfig

The version of Python that the input source code is expected to be syntactically compatible with. This may
be different from the Python interpreter being used to run LibCST. For example, you can parse code as 3.7
with a CPython 3.6 interpreter.

If unspecified, it will default to the syntax of the running interpreter (rounding down from among the
following list).

Currently, only Python 3.0, 3.1, 3.3, 3.5, 3.6, 3.7 and 3.8 syntax is supported. The gaps did not have any
syntax changes from the version prior.

parsed_python_version: PythonVersionInfo

A named tuple with the major and minor Python version numbers. This is derived from python_version
and should not be supplied to the PartialParserConfig constructor.

encoding: str | AutoConfig

The file’s encoding format. When parsing a bytes object, this value may be inferred from the contents of
the parsed source code. When parsing a str, this value defaults to "utf-8".

future_imports: FrozenSet[str] | AutoConfig

Detected __future__ import names

default_indent: str | AutoConfig

The indentation of the file, expressed as a series of tabs and/or spaces. This value is inferred from the
contents of the parsed source code by default.

38 Chapter 9. Parsing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

default_newline: str | AutoConfig

The newline of the file, expressed as \n, \r\n, or \r. This value is inferred from the contents of the parsed
source code by default.

9.1 Syntax Errors

final class libcst.ParserSyntaxError

Contains an error encountered while trying to parse a piece of source code. This exception shouldn’t be con-
structed directly by the user, but instead may be raised by calls to parse_module(), parse_expression(), or
parse_statement().

This does not inherit from SyntaxError because Python’s may raise a SyntaxError for any number of reasons,
potentially leading to unintended behavior.

message: str

A human-readable explanation of the syntax error without information about where the error occurred.

For a human-readable explanation of the error alongside information about where it occurred, use
__str__() (via str(ex)) instead.

raw_line: int

The one-indexed line where the error occured.

raw_column: int

The zero-indexed column as a number of characters from the start of the line where the error occured.

__str__()→ str
A multi-line human-readable error message of where the syntax error is in their code. For example:

Syntax Error @ 2:1.
Incomplete input. Encountered end of file (EOF), but expected 'except', or
→˓'finally'.

try: pass
^

property context: str | None

A formatted string containing the line of code with the syntax error (or a non-empty line above it) along
with a caret indicating the exact column where the error occurred.

Return None if there’s no relevant non-empty line to show. (e.g. the file consists of only blank lines)

property editor_line: int

The expected one-indexed line in the user’s editor. This is the same as raw_line.

property editor_column: int

The expected one-indexed column that’s likely to match the behavior of the user’s editor, assuming tabs
expand to 1-8 spaces. This is the column number shown when the syntax error is printed out with str.

This assumes single-width characters. However, because python doesn’t ship with a wcwidth function, it’s
hard to handle this properly without a third-party dependency.

For a raw zero-indexed character offset without tab expansion, see raw_column.

9.1. Syntax Errors 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

LibCST Documentation

40 Chapter 9. Parsing

CHAPTER

TEN

NODES

CSTNode and its subclasses cover Python’s full grammar in a whitespace-sensitive fashion, forming LibCST’s concrete
syntax tree.

Many of these nodes are designed to behave similarly to Python’s abstract syntax tree.

10.1 CSTNode

The base node type which all other nodes derive from.

class libcst.CSTNode

validate_types_shallow()→ None
Compares the type annotations on a node’s fields with those field’s actual values at runtime. Raises a
TypeError is a mismatch is found.

Only validates the current node, not any of it’s children. For a recursive version, see
validate_types_deep().

If you’re using a static type checker (highly recommended), this is useless. However, if your code doesn’t
use a static type checker, or if you’re unable to statically type your code for some reason, you can use this
method to help validate your tree.

Some (non-typing) validation is done unconditionally during the construction of a node. That validation
does not overlap with the work that validate_types_deep() does.

validate_types_deep()→ None
Like validate_types_shallow(), but recursively validates the whole tree.

property children: Sequence[CSTNode]

The immediate (not transitive) child CSTNodes of the current node. Various properties on the nodes, such
as string values, will not be visited if they are not a subclass of CSTNode.

Iterable properties of the node (e.g. an IndentedBlock’s body) will be flattened into the children’s sequence.

The children will always be returned in the same order that they appear lexically in the code.

visit(visitor: CSTTransformer | CSTVisitor)→ _CSTNodeSelfT | RemovalSentinel |
FlattenSentinel[_CSTNodeSelfT]

Visits the current node, its children, and all transitive children using the given visitor’s callbacks.

with_changes(**changes: Any)→ _CSTNodeSelfT
A convenience method for performing mutation-like operations on immutable nodes. Creates a new object
of the same type, replacing fields with values from the supplied keyword arguments.

For example, to update the test of an if conditional, you could do:

41

https://greentreesnakes.readthedocs.io/en/latest/nodes.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Any

LibCST Documentation

def leave_If(self, original_node: cst.If, updated_node: cst.If) -> cst.If:
new_node = updated_node.with_changes(test=new_conditional)
return new_node

new_nodewill have the same body, orelse, and whitespace fields as updated_node, but with the updated
test field.

The accepted arguments match the arguments given to __init__, however there are no required or posi-
tional arguments.

TODO: This API is untyped. There’s probably no sane way to type it using pyre’s current feature-set, but
we should still think about ways to type this or a similar API in the future.

deep_clone()→ _CSTNodeSelfT
Recursively clone the entire tree. The created tree is a new tree has the same representation but different
identity.

>>> tree = cst.parse_expression("1+2")

>>> tree.deep_clone() == tree
False

>>> tree == tree
True

>>> tree.deep_equals(tree.deep_clone())
True

deep_equals(other: CSTNode)→ bool
Recursively inspects the entire tree under self and other to determine if the two trees are equal by repre-
sentation instead of identity (==).

deep_replace(old_node: CSTNode, new_node: CSTNodeT)→ _CSTNodeSelfT | CSTNodeT
Recursively replaces any instance of old_node with new_node by identity. Use this to avoid nested
with_changes blocks when you are replacing one of a node’s deep children with a new node. Note that if
you have previously modified the tree in a way that old_node appears more than once as a deep child, all
instances will be replaced.

deep_remove(old_node: CSTNode)→ _CSTNodeSelfT | RemovalSentinel
Recursively removes any instance of old_node by identity. Note that if you have previously modified the
tree in a way that old_node appears more than once as a deep child, all instances will be removed.

with_deep_changes(old_node: CSTNode, **changes: Any)→ _CSTNodeSelfT
A convenience method for applying with_changes to a child node. Use this to avoid chains of
with_changes or combinations of deep_replace and with_changes.

The accepted arguments match the arguments given to the child node’s __init__.

TODO: This API is untyped. There’s probably no sane way to type it using pyre’s current feature-set, but
we should still think about ways to type this or a similar API in the future.

classmethod field(*args: object, **kwargs: object)→ Any
A helper that allows us to easily use CSTNodes in dataclass constructor defaults without accidentally alias-
ing nodes by identity across multiple instances.

42 Chapter 10. Nodes

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Any

LibCST Documentation

10.2 Module

A node that represents an entire python module.

class libcst.Module

Contains some top-level information inferred from the file letting us set correct defaults when printing the tree
about global formatting rules. All code parsed with parse_module() will be encapsulated in a module.

body: Sequence[SimpleStatementLine | BaseCompoundStatement]

A list of zero or more statements that make up this module.

header: Sequence[EmptyLine]

Normally any whitespace/comments are assigned to the next node visited, but Module is a special case, and
comments at the top of the file tend to refer to the module itself, so we assign them to the Module instead
of the first statement in the body.

footer: Sequence[EmptyLine]

Any trailing whitespace/comments found after the last statement.

encoding: str

The file’s encoding format. When parsing a bytes object, this value may be inferred from the contents of
the parsed source code. When parsing a str, this value defaults to "utf-8".

This value affects how bytes encodes the source code.

default_indent: str

The indentation of the file, expressed as a series of tabs and/or spaces. This value is inferred from the
contents of the parsed source code by default.

default_newline: str

The newline of the file, expressed as \n, \r\n, or \r. This value is inferred from the contents of the parsed
source code by default.

has_trailing_newline: bool

Whether the module has a trailing newline or not.

visit(visitor: CSTTransformer | CSTVisitor)→ _ModuleSelfT
Returns the result of running a visitor over this module.

Module overrides the default visitor entry point to resolve metadata dependencies declared by ‘visitor’.

property code: str

The string representation of this module, respecting the inferred indentation and newline type.

property bytes: bytes

The bytes representation of this module, respecting the inferred indentation and newline type, using the
current encoding.

code_for_node(node: CSTNode)→ str
Generates the code for the given node in the context of this module. This is a method of Module, not
CSTNode, because we need to know the module’s default indentation and newline formats.

property config_for_parsing: PartialParserConfig

Generates a parser config appropriate for passing to a parse_expression() or parse_statement()
call. This is useful when using either parser function to generate code from a string template. By using a
generated parser config instead of the default, you can guarantee that trees generated from both statement
and expression strings have the same inferred defaults for things like newlines, indents and similar:

10.2. Module 43

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

module = cst.parse_module("pass\n")
expression = cst.parse_expression("1 + 2", config=module.config_for_parsing)

get_docstring(clean: bool = True)→ str | None
Returns a inspect.cleandoc() cleaned docstring if the docstring is available, None otherwise.

10.3 Expressions

An expression is anything that represents a value (e.g. it could be returned from a function). All expressions subclass
from BaseExpression.

Expression can be parsed with parse_expression() or as part of a statement or module using parse_statement()
or parse_module().

class libcst.BaseExpression

An base class for all expressions. BaseExpression contains no fields.

10.3.1 Names and Object Attributes

class libcst.Name

A simple variable name. Names are typically used in the context of a variable access, an assignment, or a deletion.

Dotted variable names (a.b.c) are represented with Attribute nodes, and subscripted variable names (a[b])
are represented with Subscript nodes.

value: str

The variable’s name (or “identifier”) as a string.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.Attribute

An attribute reference, such as x.y.

Note that in the case of x.y.z, the outer attribute will have an attr of z and the value will be another Attribute
referencing the y attribute on x:

Attribute(
value=Attribute(

value=Name("x")
attr=Name("y")

),
attr=Name("z"),

)

value: BaseExpression

An expression which, when evaluated, will produce an object with attr as an attribute.

attr: Name

The name of the attribute being accessed on the value object.

44 Chapter 10. Nodes

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/inspect.html#inspect.cleandoc
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

dot: Dot

A separating dot. If there’s whitespace between the value and attr, this dot owns it.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

10.3.2 Operations and Comparisons

Operation and Comparison nodes combine one or more expressions with an operator.

class libcst.UnaryOperation

Any generic unary expression, such as not x or -x. UnaryOperation nodes apply a BaseUnaryOp to an
expression.

operator: BaseUnaryOp

The unary operator that applies some operation (e.g. negation) to the expression.

expression: BaseExpression

The expression that should be transformed (e.g. negated) by the operator to create a new value.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.BinaryOperation

An operation that combines two expression such as x << y or y + z. BinaryOperation nodes apply a
BaseBinaryOp to an expression.

Binary operations do not include operations performed with BaseBooleanOp nodes, such as and or or. Instead,
those operations are provided by BooleanOperation.

It also does not include support for comparision operators performed with BaseCompOp, such as <, >=, ==, is,
or in. Instead, those operations are provided by Comparison.

left: BaseExpression

The left hand side of the operation.

operator: BaseBinaryOp

The actual operator such as << or + that combines the left and right expressions.

right: BaseExpression

The right hand side of the operation.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.BooleanOperation

An operation that combines two booleans such as x or y or z and w BooleanOperation nodes apply a
BaseBooleanOp to an expression.

Boolean operations do not include operations performed with BaseBinaryOp nodes, such as + or <<. Instead,
those operations are provided by BinaryOperation.

10.3. Expressions 45

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

It also does not include support for comparision operators performed with BaseCompOp, such as <, >=, ==, is,
or in. Instead, those operations are provided by Comparison.

left: BaseExpression

The left hand side of the operation.

operator: BaseBooleanOp

The actual operator such as and or or that combines the left and right expressions.

right: BaseExpression

The right hand side of the operation.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.Comparison

A comparison between multiple values such as x < y, x < y < z, or x in [y, z]. These comparisions
typically result in boolean values.

Unlike BinaryOperation and BooleanOperation, comparisons are not restricted to a left and right child.
Instead they can contain an arbitrary number of ComparisonTarget children.

x < y < z is not equivalent to (x < y) < z or x < (y < z). Instead, it’s roughly equivalent to x < y and
y < z.

For more details, see Python’s documentation on comparisons.

x < y < z

Comparison(
Name("x"),
[

ComparisonTarget(LessThan(), Name("y")),
ComparisonTarget(LessThan(), Name("z")),

],
)

left: BaseExpression

The first value in the full sequence of values to compare. This value will be compared against the first value
in comparisions.

comparisons: Sequence[ComparisonTarget]

Pairs of BaseCompOp operators and expression values to compare. These come after left. Each value is
compared against the value before and after itself in the sequence.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.ComparisonTarget

A target for a Comparison. Owns the comparison operator and the value to the right of the operator.

operator: BaseCompOp

A comparison operator such as <, >=, ==, is, or in.

46 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/reference/expressions.html#comparisons
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

comparator: BaseExpression

The right hand side of the comparison operation.

10.3.3 Control Flow

class libcst.Asynchronous

Used by asynchronous function definitions, as well as async for and async with.

whitespace_after: SimpleWhitespace

Any space that appears directly after this async keyword.

class libcst.Await

An await expression. Await expressions are only valid inside the body of an asynchronous FunctionDef or (as
of Python 3.7) inside of an asynchronous GeneratorExp nodes.

expression: BaseExpression

The actual expression we need to wait for.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

whitespace_after_await: BaseParenthesizableWhitespace

Whitespace that appears after the async keyword, but before the inner expression.

class libcst.Yield

A yield expression similar to yield x or yield from fun().

To learn more about the ways that yield can be used in generators, refer to Python’s language reference.

value: BaseExpression | From | None

The value yielded from the generator, in the case of a From clause, a sub-generator to iterate over.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

whitespace_after_yield: BaseParenthesizableWhitespace | MaybeSentinel

Whitespace after the yield keyword, but before the value.

class libcst.From

A from x stanza in a Yield or Raise.

item: BaseExpression

The expression that we are yielding/raising from.

whitespace_before_from: BaseParenthesizableWhitespace | MaybeSentinel

The whitespace at the very start of this node.

whitespace_after_from: BaseParenthesizableWhitespace

The whitespace after the from keyword, but before the item.

class libcst.IfExp

An if expression of the form body if test else orelse.

If statements are provided by If and Else nodes.

10.3. Expressions 47

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/reference/expressions.html#yieldexpr
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

test: BaseExpression

The test to perform.

body: BaseExpression

The expression to evaluate when the test is true.

orelse: BaseExpression

The expression to evaluate when the test is false.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

whitespace_before_if: BaseParenthesizableWhitespace

Whitespace after the body expression, but before the if keyword.

whitespace_after_if: BaseParenthesizableWhitespace

Whitespace after the if keyword, but before the test clause.

whitespace_before_else: BaseParenthesizableWhitespace

Whitespace after the test expression, but before the else keyword.

whitespace_after_else: BaseParenthesizableWhitespace

Whitespace after the else keyword, but before the orelse expression.

10.3.4 Lambdas and Function Calls

class libcst.Lambda

A lambda expression that creates an anonymous function.

Lambda(
params=Parameters([Param(Name("arg"))]),
body=Ellipsis(),

)

Represents the following code:

lambda arg: ...

Named functions statements are provided by FunctionDef .

params: Parameters

The arguments to the lambda. This is similar to the arguments on a FunctionDef , however lambda argu-
ments are not allowed to have an Annotation.

body: BaseExpression

The value that the lambda computes and returns when called.

colon: Colon

The colon separating the parameters from the body.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

48 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

whitespace_after_lambda: BaseParenthesizableWhitespace | MaybeSentinel

Whitespace after the lambda keyword, but before any argument or the colon.

class libcst.Call

An expression representing a function call, such as do_math(1, 2) or picture.post_on_instagram().

Function calls consist of a function name and a sequence of arguments wrapped in Arg nodes.

func: BaseExpression

The expression resulting in a callable that we are to call. Often a Name or Attribute.

args: Sequence[Arg]

The arguments to pass to the resulting callable. These may be a mix of positional arguments, keyword
arguments, or “starred” arguments.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation. These are not the parenthesis before and after the list of
args, but rather arguments around the entire call expression, such as ((do_math(1, 2))).

whitespace_after_func: BaseParenthesizableWhitespace

Whitespace after the func name, but before the opening parenthesis.

whitespace_before_args: BaseParenthesizableWhitespace

Whitespace after the opening parenthesis but before the first argument (if there are any). Whitespace after
the last argument but before the closing parenthesis is owned by the last Arg if it exists.

class libcst.Arg

A single argument to a Call.

This supports named keyword arguments in the form of keyword=value and variable argument expansion using
*args or **kwargs syntax.

value: BaseExpression

The argument expression itself, not including a preceding keyword, or any of the surrounding the value,
like a comma or asterisks.

keyword: Name | None

Optional keyword for the argument.

equal: AssignEqual | MaybeSentinel

The equal sign used to denote assignment if there is a keyword.

comma: Comma | MaybeSentinel

Any trailing comma.

star: Literal['', '*', '**']

A string with zero, one, or two asterisks appearing before the name. These are expanded into variable
number of positional or keyword arguments.

whitespace_after_star: BaseParenthesizableWhitespace

Whitespace after the star (if it exists), but before the keyword or value (if no keyword is provided).

whitespace_after_arg: BaseParenthesizableWhitespace

Whitespace after this entire node. The Comma node (if it exists) may also store some trailing whitespace.

10.3. Expressions 49

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal

LibCST Documentation

10.3.5 Literal Values

class libcst.Ellipsis

An ellipsis When used as an expression, it evaluates to the Ellipsis constant. Ellipsis are often used as
placeholders in code or in conjunction with SubscriptElement.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

Numbers

class libcst.BaseNumber

A type such as Integer, Float, or Imaginary that can be used anywhere that you need to explicitly take any
number type.

class libcst.Integer

value: str

A string representation of the integer, such as "100000" or 100_000.

To convert this string representation to an int, use the calculated property evaluated_value.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

property evaluated_value: int

Return an ast.literal_eval() evaluated int of value.

class libcst.Float

value: str

A string representation of the floating point number, such as "0.05", ".050", or "5e-2".

To convert this string representation to an float, use the calculated property evaluated_value.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

property evaluated_value: float

Return an ast.literal_eval() evaluated float of value.

class libcst.Imaginary

value: str

A string representation of the imaginary (complex) number, such as "2j".

To convert this string representation to an complex, use the calculated property evaluated_value.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

50 Chapter 10. Nodes

https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

property evaluated_value: complex

Return an ast.literal_eval() evaluated complex of value.

Strings

class libcst.BaseString

A type that can be used anywhere that you need to take any string. This includes SimpleString,
ConcatenatedString, and FormattedString.

class libcst.SimpleString

Any sort of literal string expression that is not a FormattedString (f-string), including triple-quoted multi-line
strings.

value: str

The texual representation of the string, including quotes, prefix characters, and any escape characters
present in the original source code , such as r"my string\n". To remove the quotes and interpret any
escape characters, use the calculated property evaluated_value.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precidence dictation.

property prefix: str

Returns the string’s prefix, if any exists. The prefix can be r, u, b, br or rb.

property quote: Literal['"', "'", '"""', "'''"]

Returns the quotation used to denote the string. Can be either ', ", ''' or """.

property raw_value: str

Returns the raw value of the string as it appears in source, without the beginning or end quotes and without
the prefix. This is often useful when constructing transforms which need to manipulate strings in source
code.

property evaluated_value: str | bytes

Return an ast.literal_eval() evaluated str of value.

class libcst.ConcatenatedString

Represents an implicitly concatenated string, such as:

"abc" "def" == "abcdef"

Warning: This is different from two strings joined in a BinaryOperation with an Add operator, and is
sometimes viewed as an antifeature of Python.

left: SimpleString | FormattedString

String on the left of the concatenation.

right: SimpleString | FormattedString | ConcatenatedString

String on the right of the concatenation.

lpar: Sequence[LeftParen]

10.3. Expressions 51

https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://lwn.net/Articles/551426/
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

rpar: Sequence[RightParen]

Sequence of parenthesis for precidence dictation.

whitespace_between: BaseParenthesizableWhitespace

Whitespace between the left and right substrings.

property evaluated_value: str | bytes | None

Return an ast.literal_eval() evaluated str of recursively concatenated left and right if and only
if both left and right are composed by SimpleString or ConcatenatedString (FormattedString
cannot be evaluated).

Formatted Strings (f-strings)

class libcst.FormattedString

An “f-string”. These formatted strings are string literals prefixed by the letter “f”. An f-string may contain
interpolated expressions inside curly braces ({ and }).

F-strings are defined in PEP 498 and documented in Python’s language reference.

>>> import libcst as cst
>>> cst.parse_expression('f"ab{cd}ef"')
FormattedString(

parts=[
FormattedStringText(

value='ab',
),
FormattedStringExpression(

expression=Name(
value='cd',
lpar=[],
rpar=[],

),
conversion=None,
format_spec=None,
whitespace_before_expression=SimpleWhitespace(

value='',
),
whitespace_after_expression=SimpleWhitespace(

value='',
),

),
FormattedStringText(

value='ef',
),

],
start='f"',
end='"',
lpar=[],
rpar=[],

)

parts: Sequence[BaseFormattedStringContent]

A formatted string is composed as a series of FormattedStringText and
FormattedStringExpression parts.

52 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://www.python.org/dev/peps/pep-0498/#specification
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

start: str

The string prefix and the leading quote, such as f", F', fr", or f""".

end: Literal['"', "'", '"""', "'''"]

The trailing quote. This must match the type of quote used in start.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precidence dictation.

property prefix: str

Returns the string’s prefix, if any exists. The prefix can be f, fr, or rf.

property quote: Literal['"', "'", '"""', "'''"]

Returns the quotation used to denote the string. Can be either ', ", ''' or """.

class libcst.BaseFormattedStringContent

The base type for FormattedStringText and FormattedStringExpression. A FormattedString is com-
posed of a sequence of BaseFormattedStringContent parts.

class libcst.FormattedStringText

Part of a FormattedString that is not inside curly braces ({ or }). For example, in:

f"ab{cd}ef"

ab and ef are FormattedStringText nodes, but {cd} is a FormattedStringExpression.

value: str

The raw string value, including any escape characters present in the source code, not including any enclosing
quotes.

class libcst.FormattedStringExpression

Part of a FormattedString that is inside curly braces ({ or }), including the surrounding curly braces. For
example, in:

f"ab{cd}ef"

{cd} is a FormattedStringExpression, but ab and ef are FormattedStringText nodes.

An f-string expression may contain conversion and format_spec suffixes that control how the expression is
converted to a string. See Python’s language reference for details.

expression: BaseExpression

The expression we will evaluate and render when generating the string.

conversion: str | None

An optional conversion specifier, such as !s, !r or !a.

format_spec: Sequence[BaseFormattedStringContent] | None

An optional format specifier following the format specification mini-language.

whitespace_before_expression: BaseParenthesizableWhitespace

Whitespace after the opening curly brace ({), but before the expression.

whitespace_after_expression: BaseParenthesizableWhitespace

Whitespace after the expression, but before the conversion, format_spec and the closing curly brace
(}). Python does not allow whitespace inside or after a conversion or format_spec.

10.3. Expressions 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/string.html#formatspec

LibCST Documentation

equal: AssignEqual | None

Equal sign for formatted string expression uses self-documenting expressions, such as f"{x=}". See the
Python 3.8 release notes.

10.3.6 Collections

Simple Collections

class libcst.Tuple

An immutable literal tuple. Tuples are often (but not always) parenthesized.

Tuple([
Element(Integer("1")),
Element(Integer("2")),
StarredElement(Name("others")),

])

generates the following code:

(1, 2, *others)

elements: Sequence[BaseElement]

A sequence containing all the Element and StarredElement nodes in the tuple.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.BaseList

A base class for List and ListComp, which both result in a list object when evaluated.

lbracket: LeftSquareBracket =
Field(name=None,type=None,default=<dataclasses._MISSING_TYPE
object>,default_factory=<function
CSTNode.field.<locals>.<lambda>>,init=True,repr=True,hash=None,compare=True,
metadata=mappingproxy({}),kw_only=<dataclasses._MISSING_TYPE
object>,_field_type=None)

rbracket: RightSquareBracket =
Field(name=None,type=None,default=<dataclasses._MISSING_TYPE
object>,default_factory=<function
CSTNode.field.<locals>.<lambda>>,init=True,repr=True,hash=None,compare=True,
metadata=mappingproxy({}),kw_only=<dataclasses._MISSING_TYPE
object>,_field_type=None)

Brackets surrounding the list.

lpar: Sequence[LeftParen] = ()

rpar: Sequence[RightParen] = ()

Sequence of parenthesis for precedence dictation.

54 Chapter 10. Nodes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/whatsnew/3.8.html#f-strings-support-for-self-documenting-expressions-and-debugging
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

class libcst.List

A mutable literal list.

List([
Element(Integer("1")),
Element(Integer("2")),
StarredElement(Name("others")),

])

generates the following code:

[1, 2, *others]

List comprehensions are represented with a ListComp node.

elements: Sequence[BaseElement]

A sequence containing all the Element and StarredElement nodes in the list.

lbracket: LeftSquareBracket

rbracket: RightSquareBracket

Brackets surrounding the list.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.BaseSet

An abstract base class for Set and SetComp, which both result in a set object when evaluated.

class libcst.Set

A mutable literal set.

Set([
Element(Integer("1")),
Element(Integer("2")),
StarredElement(Name("others")),

])

generates the following code:

{1, 2, *others}

Set comprehensions are represented with a SetComp node.

elements: Sequence[BaseElement]

A sequence containing all the Element and StarredElement nodes in the set.

lbrace: LeftCurlyBrace

rbrace: RightCurlyBrace

Braces surrounding the set.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

10.3. Expressions 55

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

Simple Collection Elements

class libcst.BaseElement

An element of a literal list, tuple, or set. For elements of a literal dict, see BaseDictElement.

class libcst.Element

A simple value in a literal List, Tuple, or Set. These a literal collection may also contain a StarredElement.

If you’re using a literal Dict, see DictElement instead.

value: BaseExpression

comma: Comma | MaybeSentinel

A trailing comma. By default, we’ll only insert a comma if one is required.

class libcst.StarredElement

A starred *value element that expands to represent multiple values in a literal List, Tuple, or Set.

If you’re using a literal Dict, see StarredDictElement instead.

If this node owns parenthesis, those parenthesis wrap the leading asterisk, but not the trailing comma. For
example:

StarredElement(
cst.Name("el"),
comma=cst.Comma(),
lpar=[cst.LeftParen()],
rpar=[cst.RightParen()],

)

will generate:

(*el),

value: BaseExpression

comma: Comma | MaybeSentinel

A trailing comma. By default, we’ll only insert a comma if one is required.

lpar: Sequence[LeftParen]

Parenthesis at the beginning of the node, before the leading asterisk.

rpar: Sequence[RightParen]

Parentheses after the value, but before a comma (if there is one).

whitespace_before_value: BaseParenthesizableWhitespace

Whitespace between the leading asterisk and the value expression.

56 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

Dictionaries

class libcst.BaseDict

An abstract base class for Dict and DictComp, which both result in a dict object when evaluated.

class libcst.Dict

A literal dictionary. Key-value pairs are stored in elements using DictElement nodes.

It’s possible to expand one dictionary into another, as in {k: v, **expanded}. Expanded elements are stored
as StarredDictElement nodes.

Dict([
DictElement(Name("k1"), Name("v1")),
DictElement(Name("k2"), Name("v2")),
StarredDictElement(Name("expanded")),

])

generates the following code:

{k1: v1, k2: v2, **expanded}

elements: Sequence[BaseDictElement]

lbrace: LeftCurlyBrace

rbrace: RightCurlyBrace

Braces surrounding the set or dict.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

Dictionary Elements

class libcst.BaseDictElement

An element of a literal dict. For elements of a list, tuple, or set, see BaseElement.

class libcst.DictElement

A simple key: value pair that represents a single entry in a literal Dict. Dict nodes may also contain a
StarredDictElement.

If you’re using a literal List, Tuple, or Set, see Element instead.

key: BaseExpression

value: BaseExpression

comma: Comma | MaybeSentinel

A trailing comma. By default, we’ll only insert a comma if one is required.

whitespace_before_colon: BaseParenthesizableWhitespace

Whitespace after the key, but before the colon in key : value.

whitespace_after_colon: BaseParenthesizableWhitespace

Whitespace after the colon, but before the value in key : value.

10.3. Expressions 57

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

class libcst.StarredDictElement

A starred **value element that expands to represent multiple values in a literal Dict.

If you’re using a literal List, Tuple, or Set, see StarredElement instead.

Unlike StarredElement, this node does not own left or right parenthesis, but the value field may still contain
parenthesis. This is due to some asymmetry in Python’s grammar.

value: BaseExpression

comma: Comma | MaybeSentinel

A trailing comma. By default, we’ll only insert a comma if one is required.

whitespace_before_value: BaseParenthesizableWhitespace

Whitespace between the leading asterisks and the value expression.

10.3.7 Comprehensions

class libcst.BaseComp

A base class for all comprehension and generator expressions, including GeneratorExp, ListComp, SetComp,
and DictComp.

for_in: CompFor

class libcst.BaseSimpleComp

The base class for ListComp, SetComp, and GeneratorExp. DictComp is not a BaseSimpleComp, because it
uses key and value.

elt: BaseExpression

The expression evaluated during each iteration of the comprehension. This lexically comes before the
for_in clause, but it is semantically the inner-most element, evaluated inside the for_in clause.

for_in: CompFor

The for ... in ... if ... clause that lexically comes after elt. This may be a nested structure for
nested comprehensions. See CompFor for details.

class libcst.GeneratorExp

A generator expression. elt represents the value yielded for each item in CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive CompFor data structure inside for_in.

elt: BaseExpression

The expression evaluated and yielded during each iteration of the generator.

for_in: CompFor

The for ... in ... if ... clause that comes after elt. This may be a nested structure for nested
comprehensions. See CompFor for details.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parentheses for precedence dictation. Generator expressions must always be parenthesized.
However, if a generator expression is the only argument inside a function call, the enclosing Call node
may own the parentheses instead.

58 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

class libcst.ListComp

A list comprehension. elt represents the value stored for each item in CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive CompFor data structure inside for_in.

elt: BaseExpression

The expression evaluated and stored during each iteration of the comprehension.

for_in: CompFor

The for ... in ... if ... clause that comes after elt. This may be a nested structure for nested
comprehensions. See CompFor for details.

lbracket: LeftSquareBracket

rbracket: RightSquareBracket

Brackets surrounding the list comprehension.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.SetComp

A set comprehension. elt represents the value stored for each item in CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive CompFor data structure inside for_in.

elt: BaseExpression

The expression evaluated and stored during each iteration of the comprehension.

for_in: CompFor

The for ... in ... if ... clause that comes after elt. This may be a nested structure for nested
comprehensions. See CompFor for details.

lbrace: LeftCurlyBrace

rbrace: RightCurlyBrace

Braces surrounding the set comprehension.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

class libcst.DictComp

A dictionary comprehension. key and value represent the dictionary entry evaluated for each item.

All for ... in ... and if ... clauses are stored as a recursive CompFor data structure inside for_in.

key: BaseExpression

The key inserted into the dictionary during each iteration of the comprehension.

value: BaseExpression

The value associated with the key inserted into the dictionary during each iteration of the comprehension.

for_in: CompFor

The for ... in ... if ... clause that lexically comes after key and value. This may be a nested
structure for nested comprehensions. See CompFor for details.

10.3. Expressions 59

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

lbrace: LeftCurlyBrace

rbrace: RightCurlyBrace

Braces surrounding the dict comprehension.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

whitespace_before_colon: BaseParenthesizableWhitespace

Whitespace after the key, but before the colon in key : value.

whitespace_after_colon: BaseParenthesizableWhitespace

Whitespace after the colon, but before the value in key : value.

class libcst.CompFor

One for clause in a BaseComp, or a nested hierarchy of for clauses.

Nested loops in comprehensions are difficult to get right, but they can be thought of as a flat representation of
nested clauses.

elt for a in b for c in d if e can be thought of as:

for a in b:
for c in d:

if e:
yield elt

And that would form the following CST:

ListComp(
elt=Name("elt"),
for_in=CompFor(

target=Name("a"),
iter=Name("b"),
ifs=[],
inner_comp_for=CompFor(

target=Name("c"),
iter=Name("d"),
ifs=[

CompIf(
test=Name("e"),

),
],

),
),

)

Normal for statements are provided by For.

target: BaseAssignTargetExpression

The target to assign a value to in each iteration of the loop. This is different from GeneratorExp.elt,
ListComp.elt, SetComp.elt, and key and value in DictComp, because it doesn’t directly effect the
value of resulting generator, list, set, or dict.

60 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

iter: BaseExpression

The value to iterate over. Every value in iter is stored in target.

ifs: Sequence[CompIf]

Zero or more conditional clauses that control this loop. If any of these tests fail, the target item is skipped.

if a if b if c

has similar semantics to:

if a and b and c

inner_for_in: CompFor | None

Another CompFor node used to form nested loops. Nested comprehensions can be useful, but they tend to
be difficult to read and write. As a result they are uncommon.

asynchronous: Asynchronous | None

An optional async modifier that appears before the for keyword.

whitespace_before: BaseParenthesizableWhitespace

Whitespace that appears at the beginning of this node, before the for and async keywords.

whitespace_after_for: BaseParenthesizableWhitespace

Whitespace appearing after the for keyword, but before the target.

whitespace_before_in: BaseParenthesizableWhitespace

Whitespace appearing after the target, but before the in keyword.

whitespace_after_in: BaseParenthesizableWhitespace

Whitespace appearing after the in keyword, but before the iter.

class libcst.CompIf

A conditional clause in a CompFor, used as part of a generator or comprehension expression.

If the test fails, the current element in the CompFor will be skipped.

test: BaseExpression

An expression to evaluate. When interpreted, Python will coerce it to a boolean.

whitespace_before: BaseParenthesizableWhitespace

Whitespace before the if keyword.

whitespace_before_test: BaseParenthesizableWhitespace

Whitespace after the if keyword, but before the test expression.

10.3.8 Subscripts and Slices

class libcst.Subscript

A indexed subscript reference (Index) such as x[2], a Slice such as x[1:-1], or an extended slice
(SubscriptElement) such as x[1:2, 3].

value: BaseExpression

The left-hand expression which, when evaluated, will be subscripted, such as x in x[2].

slice: Sequence[SubscriptElement]

The SubscriptElement to extract from the value.

10.3. Expressions 61

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

lbracket: LeftSquareBracket

rbracket: RightSquareBracket

Brackets after the value surrounding the slice.

lpar: Sequence[LeftParen]

rpar: Sequence[RightParen]

Sequence of parenthesis for precedence dictation.

whitespace_after_value: BaseParenthesizableWhitespace

Whitespace after the value, but before the lbracket.

class libcst.BaseSlice

Any slice type that can slot into a SubscriptElement. This node is purely for typing.

class libcst.Index

Any index as passed to a Subscript. In x[2], this would be the 2 value.

value: BaseExpression

The index value itself.

star: Literal['*'] | None

An optional string with an asterisk appearing before the name. This is expanded into variable number of
positional arguments. See PEP-646

whitespace_after_star: BaseParenthesizableWhitespace | None

Whitespace after the star (if it exists), but before the value.

class libcst.Slice

Any slice operation in a Subscript, such as 1:, 2:3:4, etc.

Note that the grammar does NOT allow parenthesis around a slice so they are not supported here.

lower: BaseExpression | None

The lower bound in the slice, if present

upper: BaseExpression | None

The upper bound in the slice, if present

step: BaseExpression | None

The step in the slice, if present

first_colon: Colon

The first slice operator

second_colon: Colon | MaybeSentinel

The second slice operator, usually omitted

class libcst.SubscriptElement

Part of a sequence of slices in a Subscript, such as 1:2, 3. This is not used in Python’s standard library,
but it is used in some third-party libraries. For example, NumPy uses it to select values and ranges from multi-
dimensional arrays.

slice: BaseSlice

A slice or index that is part of a subscript.

comma: Comma | MaybeSentinel

A separating comma, with any whitespace it owns.

62 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy-1.10.1/user/basics.indexing.html
https://docs.scipy.org/doc/numpy-1.10.1/user/basics.indexing.html

LibCST Documentation

10.3.9 Parenthesis, Brackets, and Braces

class libcst.LeftParen

Used by various nodes to denote a parenthesized section. This doesn’t own the whitespace to the left of it since
this is owned by the parent node.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this left parenthesis.

class libcst.RightParen

Used by various nodes to denote a parenthesized section. This doesn’t own the whitespace to the right of it since
this is owned by the parent node.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly after this left parenthesis.

class libcst.LeftSquareBracket

Used by various nodes to denote a subscript or list section. This doesn’t own the whitespace to the left of it since
this is owned by the parent node.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this left square bracket.

class libcst.RightSquareBracket

Used by various nodes to denote a subscript or list section. This doesn’t own the whitespace to the right of it
since this is owned by the parent node.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this right square bracket.

class libcst.LeftCurlyBrace

Used by various nodes to denote a dict or set. This doesn’t own the whitespace to the left of it since this is owned
by the parent node.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this left curly brace.

class libcst.RightCurlyBrace

Used by various nodes to denote a dict or set. This doesn’t own the whitespace to the right of it since this is
owned by the parent node.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this right curly brace.

10.4 Statements

Statements represent a “line of code” or a control structure with other lines of code, such as an If block.

All statements subclass from BaseSmallStatement or BaseCompoundStatement.

Statements can be parsed with parse_statement() or as part of a module using parse_module().

10.4. Statements 63

LibCST Documentation

10.4.1 Simple Statements

Statements which at most have expressions as child attributes.

class libcst.BaseSmallStatement

Encapsulates a small statement, like del or pass, and optionally adds a trailing semicolon. A small statement
is always contained inside a SimpleStatementLine or SimpleStatementSuite. This exists to simplify type
definitions and isinstance checks.

semicolon: Semicolon | MaybeSentinel = 1

An optional semicolon that appears after a small statement. This is optional for the last small statement
in a SimpleStatementLine or SimpleStatementSuite, but all other small statements inside a simple
statement must contain a semicolon to disambiguate multiple small statements on the same line.

class libcst.AnnAssign

An assignment statement such as x: int = 5 or x: int. This only allows for one assignment target unlike
Assign but it includes a variable annotation. Also unlike Assign, the assignment target is optional, as it is
possible to annotate an expression without assigning to it.

target: BaseAssignTargetExpression

The target that is being annotated and possibly assigned to.

annotation: Annotation

The annotation for the target.

value: BaseExpression | None

The optional expression being assigned to the target.

equal: AssignEqual | MaybeSentinel

The equals sign used to denote assignment if there is a value.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Assert

An assert statement such as assert x > 5 or assert x > 5, 'Uh oh!'

test: BaseExpression

The test we are going to assert on.

msg: BaseExpression | None

The optional message to display if the test evaluates to a falsey value.

comma: Comma | MaybeSentinel

A comma separating test and message, if there is a message.

whitespace_after_assert: SimpleWhitespace

Whitespace appearing after the assert keyword and before the test.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Assign

An assignment statement such as x = y or x = y = z. Unlike AnnAssign, this does not allow type annotations
but does allow for multiple targets.

64 Chapter 10. Nodes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

targets: Sequence[AssignTarget]

One or more targets that are being assigned to.

value: BaseExpression

The expression being assigned to the targets.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.AugAssign

An augmented assignment statement, such as x += 5.

target: BaseAssignTargetExpression

Target that is being operated on and assigned to.

operator: BaseAugOp

The augmented assignment operation being performed.

value: BaseExpression

The value used with the above operator to calculate the new assignment.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Break

Represents a break statement, which is used to break out of a For or While loop early.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Continue

Represents a continue statement, which is used to skip to the next iteration in a For or While loop.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Del

Represents a del statement. del is always followed by a target.

target: BaseDelTargetExpression

The target expression will be deleted. This can be a name, a tuple, an item of a list, an item of a dictionary,
or an attribute.

whitespace_after_del: SimpleWhitespace

The whitespace after the del keyword.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Expr

An expression used as a statement, where the result is unused and unassigned. The most common place you will
find this is in function calls where the return value is unneeded.

10.4. Statements 65

https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

value: BaseExpression

The expression itself. Python will evaluate the expression but not assign the result anywhere.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Global

A global statement.

names: Sequence[NameItem]

A list of one or more names.

whitespace_after_global: SimpleWhitespace

Whitespace appearing after the global keyword and before the first name.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Import

An import statement.

names: Sequence[ImportAlias]

One or more names that are being imported, with optional local aliases.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

whitespace_after_import: SimpleWhitespace

The whitespace that appears after the import keyword but before the first import alias.

class libcst.ImportFrom

A from x import y statement.

module: Attribute | Name | None

Name or Attribute node representing the module we’re importing from. This is optional as ImportFrom
allows purely relative imports.

names: Sequence[ImportAlias] | ImportStar

One or more names that are being imported from the specified module, with optional local aliases.

relative: Sequence[Dot]

Sequence of Dot nodes indicating relative import level.

lpar: LeftParen | None

Optional open parenthesis for multi-line import continuation.

rpar: RightParen | None

Optional close parenthesis for multi-line import continuation.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

whitespace_after_from: SimpleWhitespace

The whitespace that appears after the from keyword but before the module and any relative import dots.

66 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

whitespace_before_import: SimpleWhitespace

The whitespace that appears after the module but before the import keyword.

whitespace_after_import: SimpleWhitespace

The whitespace that appears after the import keyword but before the first import name or optional left
paren.

class libcst.Nonlocal

A nonlocal statement.

names: Sequence[NameItem]

A list of one or more names.

whitespace_after_nonlocal: SimpleWhitespace

Whitespace appearing after the global keyword and before the first name.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Pass

Represents a pass statement.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Raise

A raise exc or raise exc from cause statement.

exc: BaseExpression | None

The exception that we should raise.

cause: From | None

Optionally, a from cause clause to allow us to raise an exception out of another exception’s context.

whitespace_after_raise: SimpleWhitespace | MaybeSentinel

Any whitespace appearing between the raise keyword and the exception.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

class libcst.Return

Represents a return or a return x statement.

value: BaseExpression | None

The optional expression that will be evaluated and returned.

whitespace_after_return: SimpleWhitespace | MaybeSentinel

Optional whitespace after the return keyword before the optional value expression.

semicolon: Semicolon | MaybeSentinel

Optional semicolon when this is used in a statement line. This semicolon owns the whitespace on both
sides of it when it is used.

10.4. Statements 67

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

10.4.2 Compound Statements

Statements that have one or more statement blocks as a child attribute.

class libcst.BaseCompoundStatement

Encapsulates a compound statement, like if True: pass or while True: pass. This exists to simplify type
definitions and isinstance checks.

Compound statements contain (groups of) other statements; they affect or control the execution of
those other statements in some way. In general, compound statements span multiple lines, although
in simple incarnations a whole compound statement may be contained in one line.

—https://docs.python.org/3/reference/compound_stmts.html

body: BaseSuite

The body of this compound statement.

leading_lines: Sequence[EmptyLine]

Any empty lines or comments appearing before this statement.

class libcst.ClassDef

A class definition.

name: Name

The class name.

body: BaseSuite

The class body.

bases: Sequence[Arg]

Sequence of base classes this class inherits from.

keywords: Sequence[Arg]

Sequence of keywords, such as “metaclass”.

decorators: Sequence[Decorator]

Sequence of decorators applied to this class.

lpar: LeftParen | MaybeSentinel

Optional open parenthesis used when there are bases or keywords.

rpar: RightParen | MaybeSentinel

Optional close parenthesis used when there are bases or keywords.

leading_lines: Sequence[EmptyLine]

Leading empty lines and comments before the first decorator. We assume any comments before the first
decorator are owned by the class definition itself. If there are no decorators, this will still contain all of the
empty lines and comments before the class definition.

lines_after_decorators: Sequence[EmptyLine]

Empty lines and comments between the final decorator and the ClassDef node. In the case of no decora-
tors, this will be empty.

whitespace_after_class: SimpleWhitespace

Whitespace after the class keyword and before the class name.

68 Chapter 10. Nodes

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

whitespace_after_name: SimpleWhitespace

Whitespace after the class name and before the type parameters or the opening parenthesis for the bases
and keywords.

whitespace_before_colon: SimpleWhitespace

Whitespace after the closing parenthesis or class name and before the colon.

type_parameters: TypeParameters | None

An optional declaration of type parameters.

whitespace_after_type_parameters: SimpleWhitespace

Whitespace between type parameters and opening parenthesis for the bases and keywords.

get_docstring(clean: bool = True)→ str | None
Returns a inspect.cleandoc() cleaned docstring if the docstring is available, None otherwise.

class libcst.For

A for target in iter statement.

target: BaseAssignTargetExpression

The target of the iterator in the for statement.

iter: BaseExpression

The iterable expression we will loop over.

body: BaseSuite

The suite that is wrapped with this statement.

orelse: Else | None

An optional else case which will be executed if there is no Break statement encountered while looping.

asynchronous: Asynchronous | None

Optional async modifier, if this is an async for statement.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this for statement.

whitespace_after_for: SimpleWhitespace

Whitespace after the for keyword and before the target.

whitespace_before_in: SimpleWhitespace

Whitespace after the target and before the in keyword.

whitespace_after_in: SimpleWhitespace

Whitespace after the in keyword and before the iter.

whitespace_before_colon: SimpleWhitespace

Whitespace after the iter and before the colon.

class libcst.FunctionDef

A function definition.

name: Name

The function name.

params: Parameters

The function parameters. Present even if there are no params.

10.4. Statements 69

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/inspect.html#inspect.cleandoc
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

body: BaseSuite

The function body.

decorators: Sequence[Decorator]

Sequence of decorators applied to this function. Decorators are listed in order that they appear in source
(top to bottom) as apposed to the order that they are applied to the function at runtime.

returns: Annotation | None

An optional return annotation, if the function is annotated.

asynchronous: Asynchronous | None

Optional async modifier, if this is an async function.

leading_lines: Sequence[EmptyLine]

Leading empty lines and comments before the first decorator. We assume any comments before the first
decorator are owned by the function definition itself. If there are no decorators, this will still contain all of
the empty lines and comments before the function definition.

lines_after_decorators: Sequence[EmptyLine]

Empty lines and comments between the final decorator and the FunctionDef node. In the case of no
decorators, this will be empty.

whitespace_after_def: SimpleWhitespace

Whitespace after the def keyword and before the function name.

whitespace_after_name: SimpleWhitespace

Whitespace after the function name and before the type parameters or the opening parenthesis for the pa-
rameters.

whitespace_before_params: BaseParenthesizableWhitespace

Whitespace after the opening parenthesis for the parameters but before the first param itself.

whitespace_before_colon: SimpleWhitespace

Whitespace after the closing parenthesis or return annotation and before the colon.

type_parameters: TypeParameters | None

An optional declaration of type parameters.

whitespace_after_type_parameters: SimpleWhitespace

Whitespace between the type parameters and the opening parenthesis for the (non-type) parameters.

get_docstring(clean: bool = True)→ str | None
When docstring is available, returns a inspect.cleandoc() cleaned docstring. Otherwise, returns None.

class libcst.If

An if statement. test holds a single test expression.

elif clauses don’t have a special representation in the AST, but rather appear as extra If nodes within the
orelse section of the previous one.

test: BaseExpression

The expression that, when evaluated, should give us a truthy/falsey value.

body: BaseSuite

The body of this compound statement.

orelse: If | Else | None

An optional elif or else clause. If signifies an elif block. Else signifies an else block. None signifies
no else or elif block.

70 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/inspect.html#inspect.cleandoc
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this compound statement line.

whitespace_before_test: SimpleWhitespace

The whitespace appearing after the if keyword but before the test expression.

whitespace_after_test: SimpleWhitespace

The whitespace appearing after the test expression but before the colon.

class libcst.Try

A regular try statement that cannot contain ExceptStar blocks. For try statements that can contain
ExceptStar blocks, see TryStar.

body: BaseSuite

The suite that is wrapped with a try statement.

handlers: Sequence[ExceptHandler]

A list of zero or more exception handlers.

orelse: Else | None

An optional else case.

finalbody: Finally | None

An optional finally case.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this compound statement line.

whitespace_before_colon: SimpleWhitespace

The whitespace that appears after the try keyword but before the colon.

class libcst.While

A while statement.

test: BaseExpression

The test we will loop against.

body: BaseSuite

The suite that is wrapped with this statement.

orelse: Else | None

An optional else case which will be executed if there is no Break statement encountered while looping.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this while statement.

whitespace_after_while: SimpleWhitespace

Whitespace after the while keyword and before the test.

whitespace_before_colon: SimpleWhitespace

Whitespace after the test and before the colon.

class libcst.With

A with statement.

items: Sequence[WithItem]

A sequence of one or more items that evaluate to context managers.

10.4. Statements 71

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

body: BaseSuite

The suite that is wrapped with this statement.

asynchronous: Asynchronous | None

Optional async modifier if this is an async with statement.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this with statement.

lpar: LeftParen | MaybeSentinel

Optional open parenthesis for multi-line with bindings

rpar: RightParen | MaybeSentinel

Optional close parenthesis for multi-line with bindings

whitespace_after_with: SimpleWhitespace

Whitespace after the with keyword and before the first item.

whitespace_before_colon: SimpleWhitespace

Whitespace after the last item and before the colon.

10.4.3 Helper Nodes

Nodes that are used by various statements to represent some syntax, but are not statements on their own and cannot be
used outside of the statements they belong with.

class libcst.Annotation

An annotation for a function (PEP 3107) or on a variable (PEP 526). Typically these are used in the context of
type hints (PEP 484), such as:

a variable with a type
good_ideas: List[str] = []

a function with type annotations
def concat(substrings: Sequence[str]) -> str:

...

annotation: BaseExpression

The annotation’s value itself. This is the part of the annotation after the colon or arrow.

whitespace_before_indicator: BaseParenthesizableWhitespace | MaybeSentinel

whitespace_after_indicator: BaseParenthesizableWhitespace

class libcst.AsName

An as name clause inside an ExceptHandler, ImportAlias or WithItem node.

name: Name | Tuple | List

Identifier that the parent node will be aliased to.

whitespace_before_as: BaseParenthesizableWhitespace

Whitespace between the parent node and the as keyword.

whitespace_after_as: BaseParenthesizableWhitespace

Whitespace between the as keyword and the name.

72 Chapter 10. Nodes

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0484/

LibCST Documentation

class libcst.AssignTarget

A target for an Assign. Owns the equals sign and the whitespace around it.

target: BaseAssignTargetExpression

The target expression being assigned to.

whitespace_before_equal: SimpleWhitespace

The whitespace appearing before the equals sign.

whitespace_after_equal: SimpleWhitespace

The whitespace appearing after the equals sign.

class libcst.BaseAssignTargetExpression

An expression that’s valid on the left side of an assignment. That assignment may be part an Assign node, or it
may be part of a number of other control structures that perform an assignment, such as a For loop.

Python’s grammar defines all expression as valid in this position, but the AST compiler further restricts the
allowed types, which is what this type attempts to express.

This is similar to a BaseDelTargetExpression, but it also includes StarredElement as a valid node.

The set of valid nodes are defined as part of CPython’s AST context computation.

class libcst.BaseDelTargetExpression

An expression that’s valid on the right side of a Del statement.

Python’s grammar defines all expression as valid in this position, but the AST compiler further restricts the
allowed types, which is what this type attempts to express.

This is similar to a BaseAssignTargetExpression, but it excludes StarredElement.

The set of valid nodes are defined as part of CPython’s AST context computation and as part of CPython’s
bytecode compiler.

class libcst.Decorator

A single decorator that decorates a FunctionDef or a ClassDef .

decorator: BaseExpression

The decorator that will return a new function wrapping the parent of this decorator.

leading_lines: Sequence[EmptyLine]

Line comments and empty lines before this decorator. The parent FunctionDef or ClassDef node owns
leading lines before the first decorator so that if the first decorator is removed, spacing is preserved.

whitespace_after_at: SimpleWhitespace

Whitespace after the @ and before the decorator expression itself.

trailing_whitespace: TrailingWhitespace

Optional trailing comment and newline following the decorator before the next line.

class libcst.Else

An else clause that appears optionally after an If , While, Try, or For statement.

This node does not match elif clauses in If statements. It also does not match the required else clause in an
IfExp expression (a = if b else c).

body: BaseSuite

The body of else clause.

10.4. Statements 73

https://github.com/python/cpython/blob/v3.8.0a4/Python/ast.c#L1120
https://github.com/python/cpython/blob/v3.8.0a4/Python/ast.c#L1120
https://github.com/python/cpython/blob/v3.8.0a4/Python/compile.c#L4854
https://github.com/python/cpython/blob/v3.8.0a4/Python/compile.c#L4854
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this compound statement line.

whitespace_before_colon: SimpleWhitespace

The whitespace appearing after the else keyword but before the colon.

class libcst.ExceptHandler

An except clause that appears optionally after a Try statement.

body: BaseSuite

The body of the except.

type: BaseExpression | None

The type of exception this catches. Can be a tuple in some cases, or None if the code is catching all
exceptions.

name: AsName | None

The optional name that a caught exception is assigned to.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this compound statement line.

whitespace_after_except: SimpleWhitespace

The whitespace between the except keyword and the type attribute.

whitespace_before_colon: SimpleWhitespace

The whitespace after any type or name node (whichever comes last) and the colon.

class libcst.Finally

A finally clause that appears optionally after a Try statement.

body: BaseSuite

The body of the except.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this compound statement line.

whitespace_before_colon: SimpleWhitespace

The whitespace that appears after the finally keyword but before the colon.

class libcst.ImportAlias

An import, with an optional AsName. Used in both Import and ImportFrom to specify a single import out of
another module.

name: Attribute | Name

Name or Attribute node representing the object we are importing.

asname: AsName | None

Local alias we will import the above object as.

comma: Comma | MaybeSentinel

Any trailing comma that appears after this import. This is optional for the last ImportAlias in a Import or
ImportFrom , but all other import aliases inside an import must contain a comma to disambiguate multiple
imports.

property evaluated_name: str

Returns the string name this ImportAlias represents.

74 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

property evaluated_alias: str | None

Returns the string name for any alias that this ImportAlias has. If there is no asname attribute, this returns
None.

class libcst.NameItem

A single identifier name inside a Global or Nonlocal statement.

This exists because a list of names in a global or nonlocal statement need to be separated by a comma, which
ends up owned by the NameItem node.

name: Name

Identifier name.

comma: Comma | MaybeSentinel

This is forbidden for the last NameItem in a Global/Nonlocal, but all other tems inside a global or
nonlocal statement must contain a comma to separate them.

class libcst.Parameters

A function or lambda parameter list.

params: Sequence[Param]

Positional parameters, with or without defaults. Positional parameters with defaults must all be after those
without defaults.

star_arg: Param | ParamStar | MaybeSentinel

kwonly_params: Sequence[Param]

Keyword-only params that may or may not have defaults.

star_kwarg: Param | None

Optional parameter that captures unspecified kwargs.

posonly_params: Sequence[Param]

Positional-only parameters, with or without defaults. Positional-only parameters with defaults must all be
after those without defaults.

posonly_ind: ParamSlash | MaybeSentinel

Optional sentinel that dictates parameters preceeding are positional-only args.

class libcst.Param

A positional or keyword argument in a Parameters list. May contain an Annotation and, in some cases, a
default.

name: Name

The parameter name itself.

annotation: Annotation | None

Any optional Annotation. These annotations are usually used as type hints.

equal: AssignEqual | MaybeSentinel

The equal sign used to denote assignment if there is a default.

default: BaseExpression | None

Any optional default value, used when the argument is not supplied.

comma: Comma | MaybeSentinel

A trailing comma. If one is not provided, MaybeSentinel will be replaced with a comma only if a comma
is required.

10.4. Statements 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

star: str | MaybeSentinel

Zero, one, or two asterisks appearing before name for Param’s star_arg and star_kwarg.

whitespace_after_star: BaseParenthesizableWhitespace

The whitespace before name. It will appear after star when a star exists.

whitespace_after_param: BaseParenthesizableWhitespace

The whitespace after this entire node.

class libcst.ParamSlash

A sentinel indicator on a Parameters list to denote that the previous params are positional-only args.

This syntax is described in PEP 570.

comma: Comma | MaybeSentinel

Optional comma that comes after the slash. This comma doesn’t own the whitespace between / and ,.

whitespace_after: BaseParenthesizableWhitespace

Whitespace after the / character. This is captured here in case there is a comma.

class libcst.ParamStar

A sentinel indicator on a Parameters list to denote that the subsequent params are keyword-only args.

This syntax is described in PEP 3102.

comma: Comma

class libcst.WithItem

A single context manager in a With block, with an optional variable name.

item: BaseExpression

Expression that evaluates to a context manager.

asname: AsName | None

Variable to assign the context manager to, if it is needed in the With body.

comma: Comma | MaybeSentinel

This is forbidden for the last WithItem in a With , but all other items inside a with block must contain a
comma to separate them.

10.4.4 Statement Blocks

Nodes that represent some group of statements.

class libcst.BaseSuite

A dummy base-class for both SimpleStatementSuite and IndentedBlock . This exists to simplify type
definitions and isinstance checks.

A suite is a group of statements controlled by a clause. A suite can be one or more semicolon-separated
simple statements on the same line as the header, following the header’s colon, or it can be one or more
indented statements on subsequent lines.

—https://docs.python.org/3/reference/compound_stmts.html

body: Sequence[BaseStatement] | Sequence[BaseSmallStatement]

76 Chapter 10. Nodes

https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0570/#specification
https://www.python.org/dev/peps/pep-3102/#specification
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

class libcst.SimpleStatementLine

A simple statement that’s part of an IndentedBlock or Module. A simple statement is a series of small statements
joined together by semicolons.

This isn’t differentiated from a SimpleStatementSuite in the grammar, but because a SimpleStatementLine
can own additional whitespace that a SimpleStatementSuite doesn’t have, we’re differentiating it in the CST.

body: Sequence[BaseSmallStatement]

Sequence of small statements. All but the last statement are required to have a semicolon.

leading_lines: Sequence[EmptyLine]

Sequence of empty lines appearing before this simple statement line.

trailing_whitespace: TrailingWhitespace

Any optional trailing comment and the final NEWLINE at the end of the line.

class libcst.SimpleStatementSuite

A simple statement that’s used as a suite. A simple statement is a series of small statements joined together by
semicolons. A suite is the thing that follows the colon in a compound statement.

if test:<leading_whitespace><body><trailing_whitespace>

This isn’t differentiated from a SimpleStatementLine in the grammar, but because the two classes need to
track different whitespace, we’re differentiating it in the CST.

body: Sequence[BaseSmallStatement]

Sequence of small statements. All but the last statement are required to have a semicolon.

leading_whitespace: SimpleWhitespace

The whitespace between the colon in the parent statement and the body.

trailing_whitespace: TrailingWhitespace

Any optional trailing comment and the final NEWLINE at the end of the line.

class libcst.IndentedBlock

Represents a block of statements beginning with an INDENT token and ending in a DEDENT token. Used as the
body of compound statements, such as an if statement’s body.

A common alternative to an IndentedBlock is a SimpleStatementSuite, which can also be used as a
BaseSuite, meaning that it can be used as the body of many compound statements.

An IndentedBlock always occurs after a colon in a BaseCompoundStatement, so it owns the trailing whites-
pace for the compound statement’s clause.

if test: # IndentedBlock's header
body

body: Sequence[BaseStatement]

Sequence of statements belonging to this indented block.

header: TrailingWhitespace

Any optional trailing comment and the final NEWLINE at the end of the line.

indent: str | None

A string represents a specific indentation. A None value uses the modules’s default indentation. This is
included because indentation is allowed to be inconsistent across a file, just not ambiguously.

10.4. Statements 77

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

footer: Sequence[EmptyLine]

Any trailing comments or lines after the dedent that are owned by this indented block. Statements own
preceeding and same-line trailing comments, but not trailing lines, so it falls on IndentedBlock to own it.
In the case that a statement follows an IndentedBlock , that statement will own the comments and lines
that are at the same indent as the statement, and this IndentedBlock will own the comments and lines
that are indented further.

10.5 Operators

Nodes that are used to signify an operation to be performed on a variable or value.

10.5.1 Unary Operators

Nodes that are used with UnaryOperation to perform some unary operation.

class libcst.BitInvert

class libcst.Minus

class libcst.Not

class libcst.Plus

A unary operator that can be used in a UnaryOperation expression.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

In addition, BaseUnaryOp is defined purely for typing and isinstance checks.

class libcst.BaseUnaryOp

10.5.2 Boolean Operators

Nodes that are used with BooleanOperation to perform some boolean operation.

class libcst.And

class libcst.Or

A boolean operator that can be used in a BooleanOperation expression.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

In addition, BaseBooleanOp is defined purely for typing and isinstance checks.

class libcst.BaseBooleanOp

78 Chapter 10. Nodes

https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

10.5.3 Binary Operators

Nodes that are used with BinaryOperation to perform some binary operation.

class libcst.Add

class libcst.BitAnd

class libcst.BitOr

class libcst.BitXor

class libcst.Divide

class libcst.FloorDivide

class libcst.LeftShift

class libcst.MatrixMultiply

class libcst.Modulo

class libcst.Multiply

class libcst.Power

class libcst.RightShift

class libcst.Subtract

A binary operator that can be used in a BinaryOperation expression.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

In addition, BaseBinaryOp is defined purely for typing and isinstance checks.

class libcst.BaseBinaryOp

10.5.4 Comparison Operators

Nodes that are used with Comparison to perform some comparison operation.

class libcst.Equal

class libcst.GreaterThan

class libcst.GreaterThanEqual

class libcst.In

class libcst.Is

class libcst.LessThan

class libcst.LessThanEqual

A comparision operator that can be used in a Comparison expression.

10.5. Operators 79

LibCST Documentation

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

class libcst.NotEqual

A comparison operator that can be used in a Comparison expression.

This node defines a static value for convenience, but in reality due to PEP 401 it can be one of two values, both
of which should be a NotEqual Comparison operator.

value: str

The actual text value of this operator. Can be either != or <>.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

class libcst.IsNot

class libcst.NotIn

A comparision operator that can be used in a Comparison expression.

This operator spans two tokens that must be separated by at least one space, so there is a third whitespace attribute
to represent this.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_between: BaseParenthesizableWhitespace

Any space that appears between the not and in tokens.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

In addition, BaseCompOp is defined purely for typing and isinstance checks.

class libcst.BaseCompOp

10.5.5 Augmented Assignment Operators

Nodes that are used with AugAssign to perform some agumented assignment.

class libcst.AddAssign

class libcst.BitAndAssign

class libcst.BitOrAssign

class libcst.BitXorAssign

class libcst.DivideAssign

class libcst.FloorDivideAssign

80 Chapter 10. Nodes

https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

class libcst.LeftShiftAssign

class libcst.MatrixMultiplyAssign

class libcst.ModuloAssign

class libcst.MultiplyAssign

class libcst.PowerAssign

class libcst.RightShiftAssign

class libcst.SubtractAssign

An augmented assignment operator that can be used in a AugAssign statement.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this operator.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this operator.

In addition, BaseAugOp is defined purely for typing and isinstance checks.

class libcst.BaseAugOp

10.6 Miscellaneous

Miscelaneous nodes that are purely syntactic trivia. While python requires these nodes in order to parse a module,
statement or expression they do not carry any meaning on their own.

class libcst.AssignEqual

Used by AnnAssign to denote a single equal character when doing an assignment on top of a type annotation.
Also used by Param and Arg to denote assignment of a default value, and by FormattedStringExpression
to denote usage of self-documenting expressions.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this equal sign.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this equal sign.

class libcst.Colon

Used by Slice as a separator between subsequent expressions, and in Lambda to separate arguments and body.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this colon.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this colon.

class libcst.Comma

Syntactic trivia used as a separator between subsequent items in various parts of the grammar.

Some use-cases are:

• Import or ImportFrom .

• FunctionDef arguments.

10.6. Miscellaneous 81

LibCST Documentation

• Tuple/List/Set/Dict elements.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this comma.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this comma.

class libcst.Dot

Used by Attribute as a separator between subsequent Name nodes.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this dot.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this dot.

class libcst.ImportStar

Used by ImportFrom to denote a star import instead of a list of importable objects.

class libcst.Semicolon

Used by any small statement (any subclass of BaseSmallStatement such as Pass) as a separator between
subsequent nodes contained within a SimpleStatementLine or SimpleStatementSuite.

whitespace_before: BaseParenthesizableWhitespace

Any space that appears directly before this semicolon.

whitespace_after: BaseParenthesizableWhitespace

Any space that appears directly after this semicolon.

10.7 Whitespace

Nodes that encapsulate pure whitespace.

class libcst.Comment

A comment including the leading pound (#) character.

The leading pound character is included in the ‘value’ property (instead of being stripped) to help re-enforce the
idea that whitespace immediately after the pound character may be significant. E.g:

comment with whitespace at the start (usually preferred)
#comment without whitespace at the start (usually not desirable)

Usually wrapped in a TrailingWhitespace or EmptyLine node.

value: str

The comment itself. Valid values start with the pound (#) character followed by zero or more non-newline
characters. Comments cannot include newlines.

class libcst.EmptyLine

Represents a line with only whitespace/comments. Usually statements will own any EmptyLine nodes above
themselves, and a Module will own the document’s header/footer EmptyLine nodes.

indent: bool

An empty line doesn’t have to correspond to the current indentation level. For example, this happens when
all trailing whitespace is stripped and there is an empty line between two statements.

82 Chapter 10. Nodes

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

LibCST Documentation

whitespace: SimpleWhitespace

Extra whitespace after the indent, but before the comment.

comment: Comment | None

An optional comment appearing after the indent and extra whitespace.

newline: Newline

The newline character that terminates this empty line.

class libcst.Newline

Represents the newline that ends an EmptyLine or a statement (as part of TrailingWhitespace).

Other newlines may occur in the document after continuation characters (the backslash, \), but those newlines
are treated as part of the SimpleWhitespace.

Optionally, a value can be specified in order to overwrite the module’s default newline. In general, this should
be left as the default, which is None. This is allowed because python modules are permitted to mix multiple
unambiguous newline markers.

value: str | None

A value of None indicates that the module’s default newline sequence should be used. A value of \n or
\r\n indicates that the exact value specified will be used for this newline.

class libcst.ParenthesizedWhitespace

This is the kind of whitespace you might see inside a parenthesized expression or statement between two tokens
when there is a newline without a line continuation (\) character.

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

A parenthesized whitespace cannot be empty since it requires at least one TrailingWhitespace. If you have
whitespace that does not contain comments or newlines, use SimpleWhitespace instead.

first_line: TrailingWhitespace

The whitespace that comes after the previous node, up to and including the end-of-line comment and new-
line.

empty_lines: Sequence[EmptyLine]

Any lines after the first that contain only indentation and/or comments.

indent: bool

Whether or not the final simple whitespace is indented regularly.

last_line: SimpleWhitespace

Extra whitespace after the indent, but before the next node.

property empty: bool

Indicates that this node is empty (zero whitespace characters). For ParenthesizedWhitespace this will
always be False.

class libcst.SimpleWhitespace

This is the kind of whitespace you might see inside the body of a statement or expression between two tokens.
This is the most common type of whitespace.

A simple whitespace cannot contain a newline character unless it is directly preceeded by a line continuation char-
acter (\). It can contain zero or more spaces or tabs. If you need a newline character without a line continuation
character, use ParenthesizedWhitespace instead.

Simple whitespace is often non-semantic (optional), but in cases where whitespace solves a grammar ambiguity
between tokens (e.g. if test, versus iftest), it has some semantic value.

10.7. Whitespace 83

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

LibCST Documentation

An example SimpleWhitespace containing a space, a line continuation, a newline and another space is as
follows:

SimpleWhitespace(r" \\n ")

value: str

Actual string value of the simple whitespace. A legal value contains only space, \f and \t characters, and
optionally a continuation (\) followed by a newline (\n or \r\n).

property empty: bool

Indicates that this node is empty (zero whitespace characters).

class libcst.TrailingWhitespace

The whitespace at the end of a line after a statement. If a line contains only whitespace, EmptyLine should be
used instead.

whitespace: SimpleWhitespace

Any simple whitespace before any comment or newline.

comment: Comment | None

An optional comment appearing after any simple whitespace.

newline: Newline

The newline character that terminates this trailing whitespace.

class libcst.BaseParenthesizableWhitespace

This is the kind of whitespace you might see inside the body of a statement or expression between two tokens.
This is the most common type of whitespace.

The list of allowed characters in a whitespace depends on whether it is found inside a parenthesized expression
or not. This class allows nodes which can be found inside or outside a (), [] or {} section to accept either
whitespace form.

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Parenthesizable whitespace may contain a backslash character (\), when used as a line-continuation character.
While the continuation character isn’t technically “whitespace”, it serves the same purpose.

Parenthesizable whitespace is often non-semantic (optional), but in cases where whitespace solves a grammar
ambiguity between tokens (e.g. if test, versus iftest), it has some semantic value.

abstract property empty: bool

Indicates that this node is empty (zero whitespace characters).

10.8 Maybe Sentinel

class libcst.MaybeSentinel

A MaybeSentinel value is used as the default value for some attributes to denote that when generating code
(when Module.code is evaluated) we should optionally include this element in order to generate valid code.

MaybeSentinel is only used for “syntactic trivia” that most users shouldn’t care much about anyways, like
commas, semicolons, and whitespace.

For example, a function call’s Arg.comma value defaults to MaybeSentinel.DEFAULT. A comma is required
after every argument, except for the last one. If a comma is required and Arg.comma is a MaybeSentinel, one
is inserted.

84 Chapter 10. Nodes

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://docs.python.org/3/library/functions.html#bool

LibCST Documentation

This makes manual node construction easier, but it also means that we safely add arguments to a preexisting
function call without manually fixing the commas:

>>> import libcst as cst
>>> fn_call = cst.parse_expression("fn(1, 2)")
>>> new_fn_call = fn_call.with_changes(
... args=[*fn_call.args, cst.Arg(cst.Integer("3"))]
...)
>>> dummy_module = cst.parse_module("") # we need to use Module.code_for_node
>>> dummy_module.code_for_node(fn_call)
'fn(1, 2)'
>>> dummy_module.code_for_node(new_fn_call)
'fn(1, 2, 3)'

Notice that a comma was automatically inserted after the second argument. Since the original second argu-
ment had no comma, it was initialized to MaybeSentinel.DEFAULT. During the code generation of the second
argument, a comma was inserted to ensure that the resulting code is valid.

Warning: While this sentinel is used in place of nodes, it is not a CSTNode, and will not be visited by a
CSTVisitor.

Some other libraries, like RedBaron, take other approaches to this problem. RedBaron’s tree is mutable
(LibCST’s tree is immutable), and so they’re able to solve this problem with “proxy lists”. Both approaches
come with different sets of tradeoffs.

DEFAULT = 1

10.8. Maybe Sentinel 85

http://redbaron.pycqa.org/en/latest/index.html
http://redbaron.pycqa.org/en/latest/proxy_list.html

LibCST Documentation

86 Chapter 10. Nodes

CHAPTER

ELEVEN

VISITORS

class libcst.CSTVisitor

The low-level base visitor class for traversing a CST. This should be used in conjunction with the visit()
method on a CSTNode to visit each element in a tree starting with that node. Unlike CSTTransformer, instances
of this class cannot modify the tree.

When visiting nodes using a CSTVisitor, the return value of visit() will equal the passed in tree.

on_visit(node: CSTNode)→ bool
Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False otherwise.

on_leave(original_node: CSTNode)→ None
Called every time we leave a node, after we’ve visited its children. If the on_visit() function for this
node returns False, this function will still be called on that node.

on_visit_attribute(node: CSTNode, attribute: str)→ None
Called before a node’s child attribute is visited and after we have called on_visit() on the node. A node’s
child attributes are visited in the order that they appear in source that this node originates from.

on_leave_attribute(original_node: CSTNode, attribute: str)→ None
Called after a node’s child attribute is visited and before we have called on_leave() on the node.

class libcst.CSTTransformer

The low-level base visitor class for traversing a CST and creating an updated copy of the original CST. This
should be used in conjunction with the visit() method on a CSTNode to visit each element in a tree starting
with that node, and possibly returning a new node in its place.

When visiting nodes using a CSTTransformer, the return value of visit()will be a new tree with any changes
made in on_leave() calls reflected in its children.

on_visit(node: CSTNode)→ bool
Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False otherwise.

on_leave(original_node: CSTNodeT , updated_node: CSTNodeT)→ CSTNodeT | RemovalSentinel |
FlattenSentinel[CSTNodeT]

Called every time we leave a node, after we’ve visited its children. If the on_visit() function for this
node returns False, this function will still be called on that node.

original_node is guaranteed to be the same node as is passed to on_visit(), so it is safe to do state-
based checks using the is operator. Modifications should always be performed on the updated_node so
as to not overwrite changes made by child visits.

87

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

LibCST Documentation

Returning RemovalSentinel.REMOVE indicates that the node should be removed from its parent. This is
not always possible, and may raise an exception if this node is required. As a convenience, you can use
RemoveFromParent() as an alias to RemovalSentinel.REMOVE.

on_visit_attribute(node: CSTNode, attribute: str)→ None
Called before a node’s child attribute is visited and after we have called on_visit() on the node. A node’s
child attributes are visited in the order that they appear in source that this node originates from.

on_leave_attribute(original_node: CSTNode, attribute: str)→ None
Called after a node’s child attribute is visited and before we have called on_leave() on the node.

Unlike on_leave(), this function does not allow modifications to the tree and is provided solely for state
management.

libcst.RemoveFromParent()→ RemovalSentinel
A convenience method for requesting that this node be removed by its parent. Use this in place of returning
RemovalSentinel directly. For example, to remove all arguments unconditionally:

def leave_Arg(
self, original_node: cst.Arg, updated_node: cst.Arg

) -> Union[cst.Arg, cst.RemovalSentinel]:
return RemoveFromParent()

class libcst.RemovalSentinel

A RemovalSentinel.REMOVE value should be returned by a CSTTransformer.on_leave() method when
we want to remove that child from its parent. As a convenience, this can be constructed by calling libcst.
RemoveFromParent().

The parent node should make a best-effort to remove the child, but may raise an exception when removing the
child doesn’t make sense, or could change the semantics in an unexpected way. For example, a function definition
with no name doesn’t make sense, but removing one of the arguments is valid.

In we can’t automatically remove the child, the developer should instead remove the child by constructing a new
parent in the parent’s on_leave() call.

We use this instead of None to force developers to be explicit about deletions. Because None is the default return
value for a function with no return statement, it would be too easy to accidentally delete nodes from the tree by
forgetting to return a value.

REMOVE = 1

class libcst.FlattenSentinel

A FlattenSentinel may be returned by a CSTTransformer.on_leave()method when one wants to replace
a node with multiple nodes. The replaced node must be contained in a Sequence attribute such as body. This is
generally the case for BaseStatement and BaseSmallStatement. For example to insert a print before every
return:

def leave_Return(
self, original_node: cst.Return, updated_node: cst.Return

) -> Union[cst.Return, cst.RemovalSentinel, cst.FlattenSentinel[cst.
→˓BaseSmallStatement]]:

log_stmt = cst.Expr(cst.parse_expression("print('returning')"))
return cst.FlattenSentinel([log_stmt, updated_node])

Returning an empty FlattenSentinel is equivalent to returning cst.RemovalSentinel.REMOVE and is sub-
ject to its requirements.

nodes: Sequence[CSTNodeT_co]

88 Chapter 11. Visitors

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

LibCST Documentation

11.1 Visit and Leave Helper Functions

While it is possible to subclass from CSTVisitor or CSTTransformer and override the
on_visit/on_leave/on_visit_attribute/on_leave_attribute functions directly, it is not recommended. The
default implementation for both visitors will look up any visit_<Type[CSTNode]>, leave_<Type[CSTNode]>,
visit_<Type[CSTNode]>_<attribute> and leave_<Type[CSTNode]>_<attribute> method on the visitor
subclass and call them directly. If such a function exists for the node in question, the visitor base class will call the
relevant function, respecting the above outlined semantics. If the function does not exist, the visitor base class will
assume that you do not care about that node and visit its children for you without requiring a default implementation.

Much like on_visit, visit_<Type[CSTNode]> return a boolean specifying whether or not LibCST should
visit a node’s children. As a convenience, you can return None instead of a boolean value from your
visit_<Type[CSTNode]> functions. Returning a None value is treated as a request for default behavior, which causes
the visitor to traverse children. It is equivalent to returning True, but requires no explicit return.

For example, the below visitor will visit every function definition, traversing to its children only if the function name
doesn’t include the word “foo”. Notice that we don’t need to provide our own on_visit or on_leave function, nor
do we need to provide visit and leave functions for the rest of the nodes which we do not care about. This will have the
effect of visiting all strings not inside of functions that have “foo” in the name. Note that we take advantage of default
behavior when we decline to return a value in visit_SimpleString.

class FooingAround(libcst.CSTVisitor):
def visit_FunctionDef(self, node: libcst.FunctionDef) -> bool:

return "foo" not in node.name.value

def visit_SimpleString(self, node: libcst.SimpleString) -> None:
print(node.value)

An example Python REPL using the above visitor is as follows:

>>> import libcst
>>> demo = libcst.parse_module("'abc'\n'123'\ndef foo():\n 'not printed'")
>>> _ = demo.visit(FooingAround())
'abc'
'123'

11.2 Traversal Order

Traversal of any parsed tree directly matches the order that tokens appear in the source which was parsed. LibCST will
first call on_visit for the node. Then, for each of the node’s child attributes, LibCST will call on_visit_attribute
for the node’s attribute, followed by running the same visit algorithm on each child node in the node’s attribute. Then,
on_leave_attribute is called. After each attribute has been fully traversed, LibCST will call on_leave for the node.
Note that LibCST will only call on_visit_attribute and on_leave_attribute for attributes in which there might
be a LibCST node as a child. It will not call attribute visitors for attributes which are built-in python types.

For example, take the following simple tree generated by calling parse_expression("1+2").

BinaryOperation(
left=Integer(

value='1',
lpar=[],
rpar=[],

(continues on next page)

11.1. Visit and Leave Helper Functions 89

LibCST Documentation

(continued from previous page)

),
operator=Add(

whitespace_before=SimpleWhitespace(
value='',

),
whitespace_after=SimpleWhitespace(

value='',
),

),
right=Integer(

value='2',
lpar=[],
rpar=[],

),
lpar=[],
rpar=[],

)

Assuming you have a visitor that overrides every convenience helper method available, methods will be called in this
order:

visit_BinaryOperation
visit_BinaryOperation_lpar
leave_BinaryOperation_lpar
visit_BinaryOperation_left
visit_Integer
visit_Integer_lpar
leave_Integer_lpar
visit_Integer_rpar
leave_Integer_rpar
leave_Integer
leave_BinaryOperation_left
visit_BinaryOperation_operator
visit_Add
visit_Add_whitespace_before
visit_SimpleWhitespace
leave_SimpleWhitespace
leave_Add_whitespace_before
visit_Add_whitespace_after
visit_SimpleWhitespace
leave_SimpleWhitespace
leave_Add_whitespace_after
leave_Add
leave_BinaryOperation_operator
visit_BinaryOperation_right
visit_Integer
visit_Integer_lpar
leave_Integer_lpar
visit_Integer_rpar
leave_Integer_rpar
leave_Integer
leave_BinaryOperation_right

(continues on next page)

90 Chapter 11. Visitors

LibCST Documentation

(continued from previous page)

visit_BinaryOperation_rpar
leave_BinaryOperation_rpar
leave_BinaryOperation

11.3 Batched Visitors

A batchable visitor class is provided to facilitate performing operations that can be performed in parallel in a single
traversal over a CST. An example of this is metadata computation.

class libcst.BatchableCSTVisitor

The low-level base visitor class for traversing a CST as part of a batched set of traversals. This should be used in
conjunction with the visit_batched() function or the visit_batched() method from MetadataWrapper
to visit a tree. Instances of this class cannot modify the tree.

get_visitors()→ Mapping[str, Callable[[CSTNode], None]]
Returns a mapping of all the visit_<Type[CSTNode]>, visit_<Type[CSTNode]>_<attribute>,
leave_<Type[CSTNode]> and leave_<Type[CSTNode]>_<attribute>` methods defined by this visitor,
excluding all empty stubs.

libcst.visit_batched(node: CSTNodeT , batchable_visitors: Iterable[BatchableCSTVisitor], before_visit:
Callable[[CSTNode], None] | None = None, after_leave: Callable[[CSTNode], None] |
None = None)→ CSTNodeT

Do a batched traversal over node with all visitors.

before_visit and after_leave are provided as optional hooks to execute before the
visit_<Type[CSTNode]> and after the leave_<Type[CSTNode]> methods from each visitor in visitor are
executed by the batched visitor.

This function does not handle metadata dependency resolution for visitors. See visit_batched() from
MetadataWrapper for batched traversal with metadata dependency resolution.

11.3. Batched Visitors 91

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

92 Chapter 11. Visitors

CHAPTER

TWELVE

METADATA

12.1 Metadata APIs

LibCST ships with a metadata interface that defines a standardized way to associate nodes in a CST with arbitrary
metadata while maintaining the immutability of the tree. The metadata interface is designed to be declarative and type
safe. Here’s a quick example of using the metadata interface to get line and column numbers of nodes through the
PositionProvider:

class NamePrinter(cst.CSTVisitor):
METADATA_DEPENDENCIES = (cst.metadata.PositionProvider,)

def visit_Name(self, node: cst.Name) -> None:
pos = self.get_metadata(cst.metadata.PositionProvider, node).start
print(f"{node.value} found at line {pos.line}, column {pos.column}")

wrapper = cst.metadata.MetadataWrapper(cst.parse_module("x = 1"))
result = wrapper.visit(NamePrinter()) # should print "x found at line 1, column 0"

More examples of using the metadata interface can be found on the Metadata Tutorial.

12.1.1 Accessing Metadata

To work with metadata you need to wrap a module with a MetadataWrapper. The wrapper provides a resolve()
function and a resolve_many() function to generate metadata.

class libcst.metadata.MetadataWrapper

A wrapper around a Module that stores associated metadata for that module.

When a MetadataWrapper is constructed over a module, the wrapper will store a deep copy of the original
module. This means MetadataWrapper(module).module == module is False.

This copying operation ensures that a node will never appear twice (by identity) in the same tree. This allows us
to uniquely look up metadata for a node based on a node’s identity.

__init__(module: Module, unsafe_skip_copy: bool = False, cache: Mapping[ProviderT, object] = {})→
None

Parameters

• module – The module to wrap. This is deeply copied by default.

• unsafe_skip_copy – When true, this skips the deep cloning of the module. This can
provide a small performance benefit, but you should only use this if you know that there
are no duplicate nodes in your tree (e.g. this module came from the parser).

93

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

• cache – Pass the needed cache to wrapper to be used when resolving metadata.

property module: Module

The module that’s wrapped by this MetadataWrapper. By default, this is a deep copy of the passed in
module.

mw = ModuleWrapper(module)
Because `mw.module is not module`, you probably want to do visit and do
your analysis on `mw.module`, not `module`.
mw.module.visit(DoSomeAnalysisVisitor)

resolve(provider: Type[BaseMetadataProvider[_T]])→ Mapping[CSTNode, _T]
Returns a copy of the metadata mapping computed by provider.

resolve_many(providers: Collection[ProviderT])→ Mapping[ProviderT, Mapping[CSTNode, object]]
Returns a copy of the map of metadata mapping computed by each provider in providers.

The returned map does not contain any metadata from undeclared metadata dependencies that providers
has.

visit(visitor: CSTVisitorT)→ Module
Convenience method to resolve metadata before performing a traversal over self.module with visitor.
See visit().

visit_batched(visitors: Iterable[BatchableCSTVisitor], before_visit: Callable[[CSTNode], None] | None
= None, after_leave: Callable[[CSTNode], None] | None = None)→ CSTNode

Convenience method to resolve metadata before performing a traversal over self.modulewith visitors.
See visit_batched().

If you’re working with visitors, which extend MetadataDependent, metadata dependencies will be automatically
computed when visited by a MetadataWrapper and are accessible through get_metadata()

class libcst.MetadataDependent

The low-level base class for all classes that declare required metadata dependencies. CSTVisitor and
CSTTransformer extend this class.

METADATA_DEPENDENCIES: ClassVar[Collection[ProviderT]] = ()

The set of metadata dependencies declared by this class.

metadata: Mapping[ProviderT, Mapping[CSTNode, object]]

A cached copy of metadata computed by resolve(). Prefer using get_metadata() over accessing this
attribute directly.

classmethod get_inherited_dependencies()→ Collection[ProviderT]
Returns all metadata dependencies declared by classes in the MRO of cls that subclass this class.

Recursively searches the MRO of the subclass for metadata dependencies.

resolve(wrapper: MetadataWrapper)→ Iterator[None]
Context manager that resolves all metadata dependencies declared by self (using
get_inherited_dependencies()) on wrapper and caches it on self for use with get_metadata().

Upon exiting this context manager, the metadata cache on self is cleared.

get_metadata(key: ~typing.Type[BaseMetadataProvider[_T]], node: CSTNode, default:
~libcst._metadata_dependent._T = <class
'libcst._metadata_dependent._UNDEFINED_DEFAULT'>)→ _T

Returns the metadata provided by the key if it is accessible from this visitor. Metadata is accessible in a
subclass of this class if key is declared as a dependency by any class in the MRO of this class.

94 Chapter 12. Metadata

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.ClassVar
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

12.1.2 Providing Metadata

Metadata is generated through provider classes that can be be passed to MetadataWrapper.resolve() or declared
as a dependency of a MetadataDependent. These providers are then resolved automatically using methods provided
by MetadataWrapper.

In most cases, you should extend BatchableMetadataProvider when writing a provider, unless you have a particular
reason to not to use a batchable visitor. Only extend from BaseMetadataProvider if your provider does not use the
visitor pattern for computing metadata for a tree.

class libcst.BaseMetadataProvider

The low-level base class for all metadata providers. This class should be extended for metadata providers that
are not visitor-based.

This class is generic. A subclass of BaseMetadataProvider[T] will provider metadata of type T.

gen_cache: Callable[[Path, List[str], int], Mapping[str, object]] | None = None

Implement gen_cache to indicate the metadata provider depends on cache from external system. This
function will be called by FullRepoManager to compute required cache object per file path.

set_metadata(node: CSTNode, value: LazyValue[_ProvidedMetadataT] | _ProvidedMetadataT)→ None
Record a metadata value value for node.

get_metadata(key: ~typing.Type[BaseMetadataProvider[_MetadataT]], node: CSTNode, default:
~libcst._metadata_dependent.LazyValue[~libcst.metadata.base_provider._ProvidedMetadataT]
| ~libcst.metadata.base_provider._ProvidedMetadataT |
~typing.Type[~libcst._metadata_dependent._UNDEFINED_DEFAULT] = <class
'libcst._metadata_dependent._UNDEFINED_DEFAULT'>)→ _T

The same method as get_metadata() except metadata is accessed from self._computed in addition to
self.metadata. See get_metadata().

class libcst.metadata.BatchableMetadataProvider

The low-level base class for all batchable visitor-based metadata providers. Batchable providers should be pre-
ferred when possible as they are more efficient to run compared to non-batchable visitor-based providers. Inherits
from BatchableCSTVisitor.

This class is generic. A subclass of BatchableMetadataProvider[T] will provider metadata of type T.

class libcst.metadata.VisitorMetadataProvider

The low-level base class for all non-batchable visitor-based metadata providers. Inherits from CSTVisitor.

This class is generic. A subclass of VisitorMetadataProvider[T] will provider metadata of type T.

12.2 Metadata Providers

PositionProvider, ByteSpanPositionProvider, WhitespaceInclusivePositionProvider,
ExpressionContextProvider, ScopeProvider, QualifiedNameProvider, ParentNodeProvider, and
TypeInferenceProvider are currently provided. Each metadata provider may has its own custom data structure.

12.2. Metadata Providers 95

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

12.2.1 Position Metadata

There are two types of position metadata available. They both track the same position concept, but differ in terms of
representation. One represents position with line and column numbers, while the other outputs byte offset and length
pairs.

Line and column numbers are available through the metadata interface by declaring one of PositionProvider or
WhitespaceInclusivePositionProvider. For most cases, PositionProvider is what you probably want.

Node positions are is represented with CodeRange objects. See the above example.

class libcst.metadata.PositionProvider

Generates line and column metadata.

These positions are defined by the start and ending bounds of a node ignoring most instances of leading and
trailing whitespace when it is not syntactically significant.

The positions provided by this provider should eventually match the positions used by Pyre for equivalent nodes.

class libcst.metadata.WhitespaceInclusivePositionProvider

Generates line and column metadata.

The start and ending bounds of the positions produced by this provider include all whitespace owned by the node.

class libcst.metadata.CodeRange

start: CodePosition

Starting position of a node (inclusive).

end: CodePosition

Ending position of a node (exclusive).

class libcst.metadata.CodePosition

line: int

Line numbers are 1-indexed.

column: int

Column numbers are 0-indexed.

Byte offset and length pairs can be accessed using ByteSpanPositionProvider. This provider represents positions
using CodeSpan, which will contain the byte offsets of a CSTNode from the start of the file, and its length (also in
bytes).

class libcst.metadata.ByteSpanPositionProvider

Generates offset and length metadata for nodes’ positions.

For each CSTNode this provider generates a CodeSpan that contains the byte-offset of the node from the start of
the file, and its length (also in bytes). The whitespace owned by the node is not included in this length.

Note: offset and length measure bytes, not characters (which is significant for example in the case of Unicode
characters encoded in more than one byte)

class libcst.metadata.CodeSpan

Represents the position of a piece of code by its starting position and length.

Note: This class does not specify the unit of distance - it can be bytes, Unicode characters, or something else
entirely.

start: int

Offset of the code from the beginning of the file. Can be 0.

96 Chapter 12. Metadata

https://github.com/facebook/pyre-check
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

LibCST Documentation

length: int

Length of the span

12.2.2 Expression Context Metadata

class libcst.metadata.ExpressionContextProvider

Provides ExpressionContext metadata (mimics the expr_context in ast) for the following node types:
Attribute, Subscript, StarredElement , List, Tuple and Name. Note that a Name may not always have
context because of the differences between ast and LibCST. E.g. attr is a Name in LibCST but a str in ast. To
honor ast implementation, we don’t assign context to attr.

Three context types ExpressionContext.STORE, ExpressionContext.LOAD and ExpressionContext.
DEL are provided.

class libcst.metadata.ExpressionContext

Used in ExpressionContextProvider to represent context of a variable reference.

LOAD = 1

Load the value of a variable reference.

>>> libcst.MetadataWrapper(libcst.parse_module("a")).resolve(libcst.
→˓ExpressionContextProvider)
mappingproxy({Name(

value='a',
lpar=[],
rpar=[],

): <ExpressionContext.LOAD: 1>})

STORE = 2

Store a value to a variable reference by Assign (=), AugAssign (e.g. +=, -=, etc), or AnnAssign.

>>> libcst.MetadataWrapper(libcst.parse_module("a = b")).resolve(libcst.
→˓ExpressionContextProvider)
mappingproxy({Name(

value='a',
lpar=[],
rpar=[],

): <ExpressionContext.STORE: 2>, Name(
value='b',
lpar=[],
rpar=[],

): <ExpressionContext.LOAD: 1>})

DEL = 3

Delete value of a variable reference by del.

>>> libcst.MetadataWrapper(libcst.parse_module("del a")).resolve(libcst.
→˓ExpressionContextProvider)
mappingproxy({Name(

value='a',
lpar=[],
rpar=[],

): < ExpressionContext.DEL: 3 >})

12.2. Metadata Providers 97

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ast.html

LibCST Documentation

12.2.3 Scope Metadata

Scopes contain and separate variables from each other. Scopes enforce that a local variable name bound inside of a
function is not available outside of that function.

While many programming languages are “block-scoped”, Python is function-scoped. New scopes are created for
classes, functions, and comprehensions. Other block constructs like conditional statements, loops, and try. . . except
don’t create their own scope.

There are five different type of scope in Python: BuiltinScope, GlobalScope, ClassScope, FunctionScope, and
ComprehensionScope.

LibCST allows you to inspect these scopes to see what local variables are assigned or accessed within.

Note: Import statements bring new symbols into scope that are declared in other files. As such, they are represented
by Assignment for scope analysis purposes. Dotted imports (e.g. import a.b.c) generate multiple Assignment
objects — one for each module. When analyzing references, only the most specific access is recorded.

For example, the above import a.b.c statement generates three Assignment objects: one for a, one for a.b, and
one for a.b.c. A reference for a.b.c records an access only for the last assignment, while a reference for a.d only
records an access for the Assignment representing a.

class libcst.metadata.ScopeProvider

ScopeProvider traverses the entire module and creates the scope inheritance structure. It provides the scope of
name assignment and accesses. It is useful for more advanced static analysis. E.g. given a FunctionDef node,
we can check the type of its Scope to figure out whether it is a class method (ClassScope) or a regular function
(GlobalScope).

Scope metadata is available for most node types other than formatting information nodes (whitespace, parenthe-
ses, etc.).

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.expression_context_provider.ExpressionContextProvider'>,)

98 Chapter 12. Metadata

https://en.wikipedia.org/wiki/Scope_(computer_science)#Function_scope

LibCST Documentation

The set of metadata dependencies declared by this class.

class libcst.metadata.BaseAssignment

Abstract base class of Assignment and BuitinAssignment.

name: str

The name of assignment.

scope: Scope

The scope associates to assignment.

property references: Collection[Access]

Return all accesses of the assignment.

class libcst.metadata.Access

An Access records an access of an assignment.

Note: This scope analysis only analyzes access via a Name or a Name node embedded in other node like Call
or Attribute. It doesn’t support type annontation using SimpleString literal for forward references. E.g. in
this example, the "Tree" isn’t parsed as an access:

class Tree:
def __new__(cls) -> "Tree":

...

node: Name | Attribute | BaseString

The node of the access. A name is an access when the expression context is ExpressionContext.LOAD.
This is usually the name node representing the access, except for: 1) dotted imports, when it might be the
attribute that represents the most specific part of the imported symbol; and 2) string annotations, when it is
the entire string literal

scope: Scope

The scope of the access. Note that a access could be in a child scope of its assignment.

is_annotation: bool

is_type_hint: bool

property referents: Collection[BaseAssignment]

Return all assignments of the access.

record_assignment(assignment: BaseAssignment)→ None

record_assignments(name: str)→ None

class libcst.metadata.Assignment

An assignment records the name, CSTNode and its accesses.

node: CSTNode

The node of assignment, it could be a Import, ImportFrom , Name, FunctionDef , or ClassDef .

get_qualified_names_for(full_name: str)→ Set[QualifiedName]

12.2. Metadata Providers 99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set

LibCST Documentation

class libcst.metadata.BuiltinAssignment

A BuiltinAssignment represents an value provide by Python as a builtin, including functions, constants, and
types.

get_qualified_names_for(full_name: str)→ Set[QualifiedName]

class libcst.metadata.Scope

Base class of all scope classes. Scope object stores assignments from imports, variable assignments, function
definition or class definition. A scope has a parent scope which represents the inheritance relationship. That
means an assignment in parent scope is viewable to the child scope and the child scope may overwrites the
assignment by using the same name.

Use name in scope to check whether a name is viewable in the scope. Use scope[name] to retrieve all
viewable assignments in the scope.

Note: This scope analysis module only analyzes local variable names and it doesn’t handle attribute names;
for example, given a.b.c = 1, local variable name a is recorded as an assignment instead of c or a.b.c. To
analyze the assignment/access of arbitrary object attributes, we leave the job to type inference metadata provider
coming in the future.

parent: Scope

Parent scope. Note the parent scope of a GlobalScope is itself.

globals: GlobalScope

Refers to the GlobalScope.

abstract __contains__(name: str)→ bool
Check if the name str exist in current scope by name in scope.

__getitem__(name: str)→ Set[BaseAssignment]
Get assignments given a name str by scope[name].

Note: Why does it return a list of assignments given a name instead of just one assignment?

Many programming languages differentiate variable declaration and assignment. Further, those program-
ming languages often disallow duplicate declarations within the same scope, and will often hoist the dec-
laration (without its assignment) to the top of the scope. These design decisions make static analysis much
easier, because it’s possible to match a name against its single declaration for a given scope.

As an example, the following code would be valid in JavaScript:

function fn() {
console.log(value); // value is defined here, because the declaration is␣

→˓hoisted, but is currently 'undefined'.
var value = 5; // A function-scoped declaration.

}
fn(); // prints 'undefined'.

In contrast, Python’s declaration and assignment are identical and are not hoisted:

if conditional_value:
value = 5

elif other_conditional_value:
value = 10

print(value) # possibly valid, depending on conditional execution

100 Chapter 12. Metadata

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/constants.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set

LibCST Documentation

This code may throw a NameError if both conditional values are falsy. It also means that depending on
the codepath taken, the original declaration could come from either value = ... assignment node. As a
result, instead of returning a single declaration, we’re forced to return a collection of all of the assignments
we think could have defined a given name by the time a piece of code is executed. For the above example,
value would resolve to a set of both assignments.

get_qualified_names_for(node: str | CSTNode)→ Collection[QualifiedName]
Get all QualifiedName in current scope given a CSTNode. The source of a qualified name can be ei-
ther QualifiedNameSource.IMPORT, QualifiedNameSource.BUILTIN or QualifiedNameSource.
LOCAL. Given the following example, c has qualified name a.b.c with source IMPORT, f has qualified
name Cls.f with source LOCAL, a has qualified name Cls.f.<locals>.a, i has qualified name Cls.
f.<locals>.<comprehension>.i, and the builtin int has qualified name builtins.int with source
BUILTIN:

from a.b import c
class Cls:

def f(self) -> "c":
c()
a = int("1")
[i for i in c()]

We extends PEP-3155 (defines __qualname__ for class and function only; function namespace is followed
by a <locals>) to provide qualified name for all CSTNode recorded by Assignment and Access. The
namespace of a comprehension (ListComp, SetComp, DictComp) is represented with <comprehension>.

An imported name may be used for type annotation with SimpleString and currently resolving the qual-
ified given SimpleString is not supported considering it could be a complex type annotation in the string
which is hard to resolve, e.g. List[Union[int, str]].

property assignments: Assignments

Return an Assignments contains all assignmens in current scope.

property accesses: Accesses

Return an Accesses contains all accesses in current scope.

class libcst.metadata.BuiltinScope

A BuiltinScope represents python builtin declarations. See https://docs.python.org/3/library/builtins.html

class libcst.metadata.GlobalScope

A GlobalScope is the scope of module. All module level assignments are recorded in GlobalScope.

class libcst.metadata.FunctionScope

When a function is defined, it creates a FunctionScope.

class libcst.metadata.ClassScope

When a class is defined, it creates a ClassScope.

class libcst.metadata.ComprehensionScope

Comprehensions and generator expressions create their own scope. For example, in

[i for i in range(10)]

The variable i is only viewable within the ComprehensionScope.

class libcst.metadata.Assignments

A container to provide all assignments in a scope.

12.2. Metadata Providers 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://www.python.org/dev/peps/pep-3155/
https://docs.python.org/3/library/builtins.html

LibCST Documentation

__iter__()→ Iterator[BaseAssignment]
Iterate through all assignments by for i in scope.assignments.

__getitem__(node: str | CSTNode)→ Collection[BaseAssignment]
Get assignments given a name str or CSTNode by scope.assignments[node]

__contains__(node: str | CSTNode)→ bool
Check if a name str or CSTNode has any assignment by node in scope.assignments

class libcst.metadata.Accesses

A container to provide all accesses in a scope.

__iter__()→ Iterator[Access]
Iterate through all accesses by for i in scope.accesses.

__getitem__(node: str | CSTNode)→ Collection[Access]
Get accesses given a name str or CSTNode by scope.accesses[node]

__contains__(node: str | CSTNode)→ bool
Check if a name str or CSTNode has any access by node in scope.accesses

12.2.4 Qualified Name Metadata

Qualified name provides an unambiguous name to locate the definition of variable and it’s introduced for class and
function in PEP-3155. QualifiedNameProvider provides possible QualifiedName given a CSTNode.

We don’t call it fully qualified name because the name refers to the current module which doesn’t consider the hierarchy
of code repository.

For fully qualified names, there’s FullyQualifiedNameProvider which is similar to the above but takes the current
module’s location (relative to some python root folder, usually the repository’s root) into account.

class libcst.metadata.QualifiedNameSource

IMPORT = 1

BUILTIN = 2

LOCAL = 3

class libcst.metadata.QualifiedName

name: str

Qualified name, e.g. a.b.c or fn.<locals>.var.

source: QualifiedNameSource

Source of the name, either QualifiedNameSource.IMPORT, QualifiedNameSource.BUILTIN or
QualifiedNameSource.LOCAL.

class libcst.metadata.QualifiedNameProvider

Compute possible qualified names of a variable CSTNode (extends PEP-3155). It uses the
get_qualified_names_for() underlying to get qualified names. Multiple qualified names may be re-
turned, such as when we have conditional imports or an import shadows another. E.g., the provider finds a.b,
d.e and f.g as possible qualified names of c:

102 Chapter 12. Metadata

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-3155/
https://en.wikipedia.org/wiki/Fully_qualified_name
https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-3155/

LibCST Documentation

>>> wrapper = MetadataWrapper(
>>> cst.parse_module(dedent(
>>> '''
>>> if something:
>>> from a import b as c
>>> elif otherthing:
>>> from d import e as c
>>> else:
>>> from f import g as c
>>> c()
>>> '''
>>>))
>>>)
>>> call = wrapper.module.body[1].body[0].value
>>> wrapper.resolve(QualifiedNameProvider)[call],
{

QualifiedName(name="a.b", source=QualifiedNameSource.IMPORT),
QualifiedName(name="d.e", source=QualifiedNameSource.IMPORT),
QualifiedName(name="f.g", source=QualifiedNameSource.IMPORT),

}

For qualified name of a variable in a function or a comprehension, please refer get_qualified_names_for()
for more detail.

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.scope_provider.ScopeProvider'>,)

The set of metadata dependencies declared by this class.

static has_name(visitor: MetadataDependent, node: CSTNode, name: str | QualifiedName)→ bool
Check if any of qualified name has the str name or QualifiedName name.

class libcst.metadata.FullyQualifiedNameProvider

Provide fully qualified names for CST nodes. Like QualifiedNameProvider, but the provided
QualifiedName instances have absolute identifier names instead of local to the current module.

This provider is initialized with the current module’s fully qualified name, and can be used with
FullRepoManager. The module’s fully qualified name itself is stored as a metadata of the Module node. Com-
pared to QualifiedNameProvider, it also resolves relative imports.

Example usage:

>>> mgr = FullRepoManager(".", {"dir/a.py"}, {FullyQualifiedNameProvider})
>>> wrapper = mgr.get_metadata_wrapper_for_path("dir/a.py")
>>> fqnames = wrapper.resolve(FullyQualifiedNameProvider)
>>> {type(k): v for (k, v) in fqnames.items()}
{<class 'libcst._nodes.module.Module'>: {QualifiedName(name='dir.a', source=
→˓<QualifiedNameSource.LOCAL: 3>)}}

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.name_provider.QualifiedNameProvider'>,)

The set of metadata dependencies declared by this class.

classmethod gen_cache(root_path: Path, paths: List[str], timeout: int | None = None)→ Mapping[str,
ModuleNameAndPackage]

12.2. Metadata Providers 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

12.2.5 Parent Node Metadata

A CSTNode only has attributes link to its child nodes and thus only top-down tree traversal is doable. Sometimes
user may want to access the parent CSTNode for more information or traverse in bottom-up manner. We provide
ParentNodeProvider for those use cases.

class libcst.metadata.ParentNodeProvider

12.2.6 File Path Metadata

This provides the absolute file path on disk for any module being visited. Requires an active FullRepoManager when
using this provider.

class libcst.metadata.FilePathProvider

Provides the path to the current file on disk as metadata for the root Module node. Requires a FullRepoManager.
The returned path will always be resolved to an absolute path using pathlib.Path.resolve().

Example usage:

class CustomVisitor(CSTVisitor):
METADATA_DEPENDENCIES = [FilePathProvider]

path: pathlib.Path

def visit_Module(self, node: libcst.Module) -> None:
self.path = self.get_metadata(FilePathProvider, node)

>>> mgr = FullRepoManager(".", {"libcst/_types.py"}, {FilePathProvider})
>>> wrapper = mgr.get_metadata_wrapper_for_path("libcst/_types.py")
>>> fqnames = wrapper.resolve(FilePathProvider)
>>> {type(k): v for k, v in wrapper.resolve(FilePathProvider).items()}
{<class 'libcst._nodes.module.Module'>: PosixPath('/home/user/libcst/_types.py')}

classmethod gen_cache(root_path: Path, paths: List[str], timeout: int | None = None)→ Mapping[str,
Path]

12.2.7 Type Inference Metadata

Type inference is to automatically infer data types of expression for deeper understanding source code. In Python, type
checkers like Mypy or Pyre analyze type annotations and infer types for expressions. TypeInferenceProvider is
provided by Pyre Query API which requires setup watchman for incremental typechecking. FullRepoManger is built
for manage the inter process communication to Pyre.

class libcst.metadata.TypeInferenceProvider

Access inferred type annotation through Pyre Query API. It requires setup watchman and start pyre server by
running pyre command. The inferred type is a string of type annotation. E.g. typing.List[libcst._nodes.
expression.Name] is the inferred type of name n in expression n = [cst.Name("")]. All name references
use the fully qualified name regardless how the names are imported. (e.g. import libcst; libcst.Name and
import libcst as cst; cst.Name refer to the same name.) Pyre infers the type of Name, Attribute and
Call nodes. The inter process communication to Pyre server is managed by FullRepoManager.

104 Chapter 12. Metadata

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://en.wikipedia.org/wiki/Type_inference
https://github.com/python/mypy
https://pyre-check.org/
https://docs.python.org/3/library/typing.html
https://pyre-check.org/docs/querying-pyre.html
https://pyre-check.org/docs/getting-started/
https://pyre-check.org/docs/querying-pyre.html
https://pyre-check.org/docs/getting-started/
https://docs.python.org/3/library/typing.html

LibCST Documentation

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.position_provider.PositionProvider'>,)

The set of metadata dependencies declared by this class.

static gen_cache(root_path: Path, paths: List[str], timeout: int | None)→ Mapping[str, object]

class libcst.metadata.FullRepoManager

__init__(repo_root_dir: str | PurePath, paths: Collection[str], providers: Collection[ProviderT], timeout:
int = 5)→ None

Given project root directory with pyre and watchman setup, FullRepoManager handles the inter
process communication to read the required full repository cache data for metadata provider like
TypeInferenceProvider.

Parameters

• paths – a collection of paths to access full repository data.

• providers – a collection of metadata provider classes require access-
ing full repository data, currently supports TypeInferenceProvider and
FullyQualifiedNameProvider.

• timeout – number of seconds. Raises TimeoutExpired when timeout.

property cache: Dict[ProviderT, Mapping[str, object]]

The full repository cache data for all metadata providers passed in the providers parameter when con-
structing FullRepoManager. Each provider is mapped to a mapping of path to cache.

resolve_cache()→ None
Resolve cache for all providers that require it. Normally this is called by get_cache_for_path() so you
do not need to call it manually. However, if you intend to do a single cache resolution pass before forking,
it is a good idea to call this explicitly to control when cache resolution happens.

get_cache_for_path(path: str)→ Mapping[ProviderT, object]
Retrieve cache for a source file. The file needs to appear in the paths parameter when constructing
FullRepoManager.

manager = FullRepoManager(".", {"a.py", "b.py"}, {TypeInferenceProvider})
MetadataWrapper(module, cache=manager.get_cache_for_path("a.py"))

get_metadata_wrapper_for_path(path: str)→ MetadataWrapper
Create a MetadataWrapper given a source file path. The path needs to be a path relative to project root
directory. The source code is read and parsed as Module for MetadataWrapper.

manager = FullRepoManager(".", {"a.py", "b.py"}, {TypeInferenceProvider})
wrapper = manager.get_metadata_wrapper_for_path("a.py")

12.2. Metadata Providers 105

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/subprocess.html#subprocess.TimeoutExpired
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

106 Chapter 12. Metadata

CHAPTER

THIRTEEN

MATCHERS

Matchers are provided as a way of asking whether a particular LibCST node and its children match a particular shape.
It is possible to write a visitor that tracks attributes using visit_<Node> methods. It is also possible to implement
manual instance checking and traversal of a node’s children. However, both are cumbersome to write and hard to
understand. Matchers offer a more concise way of defining what attributes on a node matter when matching against
predefined patterns.

To accomplish this, a matcher has been created which corresponds to each LibCST node documented in Nodes. Match-
ers default each of their attributes to the special sentinel matcher DoNotCare(). When constructing a matcher, you
can initialize the node with only the values of attributes that you are concerned with, leaving the rest of the attributes
set to DoNotCare() in order to skip comparing against them.

13.1 Matcher APIs

13.1.1 Functions

Matchers can be used either by calling matches() or findall() directly, or by using various decorators to selectively
control when LibCST calls visitor functions.

libcst.matchers.matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode, *,
metadata_resolver: MetadataDependent | MetadataWrapper | None = None)→ bool

Given an arbitrary node from a LibCST tree, and an arbitrary matcher, returns True if the node matches the
shape defined by the matcher. Note that the node can also be a RemovalSentinel or a MaybeSentinel in
order to use matches directly on transform results and node attributes. In these cases, matches() will always
return False.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode, or a OneOf /AllOf special
matcher. It cannot be a MatchIfTrue or a DoesNotMatch() matcher since these are redundant. It cannot be a
AtLeastN or AtMostN matcher because these types are wildcards which can only be used inside sequences.

libcst.matchers.findall(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher:
BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, *,
metadata_resolver: MetadataDependent | MetadataWrapper | None = None)→
Sequence[CSTNode]

Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates over that node and all chil-
dren returning a sequence of all child nodes that match the given matcher. Note that the tree can also be a
RemovalSentinel or a MaybeSentinel in order to use findall directly on transform results and node at-
tributes. In these cases, findall() will always return an empty sequence. Note also that instead of a
LibCST tree, you can instead pass in a MetadataWrapper. This mirrors the fact that you can call visit on
a MetadataWrapper in order to iterate over it with a transform. If you provide a wrapper for the tree and do not
set the metadata_resolver parameter specifically, it will automatically be set to the wrapper for you.

107

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

The matcher can be any concrete matcher that subclasses from BaseMatcherNode, or a OneOf /AllOf special
matcher. Unlike matches(), it can also be a MatchIfTrue or DoesNotMatch()matcher, since we are traversing
the tree looking for matches. It cannot be a AtLeastN or AtMostN matcher because these types are wildcards
which can only be used inside sequences.

libcst.matchers.extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode, *,
metadata_resolver: MetadataDependent | MetadataWrapper | None = None)→
Dict[str, CSTNode | Sequence[CSTNode]] | None

Given an arbitrary node from a LibCST tree, and an arbitrary matcher, returns a dictionary of extracted children of
the tree if the node matches the shape defined by the matcher. Note that the node can also be a RemovalSentinel
or a MaybeSentinel in order to use extract directly on transform results and node attributes. In these cases,
extract() will always return None.

If the node matches the shape defined by the matcher, the return will be a dictionary whose keys are defined by
the SaveMatchedNode() name parameter, and the values will be the node or sequence that was present at that
location in the shape defined by the matcher. In the case of multiple SaveMatchedNode() matches with the
same name, parent nodes will take prioirity over child nodes, and nodes later in sequences will take priority over
nodes earlier in sequences.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode, or a OneOf /AllOf special
matcher. It cannot be a MatchIfTrue or a DoesNotMatch() matcher since these are redundant. It cannot be a
AtLeastN or AtMostN matcher because these types are wildcards which can only be used inside sequences.

libcst.matchers.extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher:
BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, *,
metadata_resolver: MetadataDependent | MetadataWrapper | None = None)→
Sequence[Dict[str, CSTNode | Sequence[CSTNode]]]

Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates over that node and all
children returning a sequence of dictionaries representing the saved and extracted children specified by
SaveMatchedNode() for each match found in the tree. This is analogous to running a findall() over a tree,
then running extract() with the same matcher over each of the returned nodes. Note that the tree can also
be a RemovalSentinel or a MaybeSentinel in order to use extractall directly on transform results and node
attributes. In these cases, extractall() will always return an empty sequence. Note also that instead of a
LibCST tree, you can instead pass in a MetadataWrapper. This mirrors the fact that you can call visit on a
MetadataWrapper in order to iterate over it with a transform. If you provide a wrapper for the tree and do not
set the metadata_resolver parameter specifically, it will automatically be set to the wrapper for you.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode, or a OneOf /AllOf special
matcher. Unlike matches(), it can also be a MatchIfTrue or DoesNotMatch()matcher, since we are traversing
the tree looking for matches. It cannot be a AtLeastN or AtMostN matcher because these types are wildcards
which can only be usedi inside sequences.

libcst.matchers.replace(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher:
BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, replacement:
MaybeSentinel | RemovalSentinel | CSTNode | Callable[[CSTNode, Dict[str,
CSTNode | Sequence[CSTNode]]], MaybeSentinel | RemovalSentinel | CSTNode],
*, metadata_resolver: MetadataDependent | MetadataWrapper | None = None)→
MaybeSentinel | RemovalSentinel | CSTNode

Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates over that node and all children and
replaces each node that matches the supplied matcher with a supplied replacement. Note that the replacement
can either be a valid node type, or a callable which takes the matched node and a dictionary of any extracted
child values and returns a valid node type. If you provide a valid LibCST node type, replace() will replace
every node that matches the supplied matcher with the replacement node. If you provide a callable, replace()
will run extract() over all matched nodes and call the callable with both the node that should be replaced and
the dictionary returned by extract(). Under all circumstances a new tree is returned. extract() should be
viewed as a short-cut to writing a transform which also returns a new tree even when no changes are applied.

108 Chapter 13. Matchers

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

Note that the tree can also be a RemovalSentinel or a MaybeSentinel in order to use replace directly on
transform results and node attributes. In these cases, replace() will return the same RemovalSentinel or
MaybeSentinel. Note also that instead of a LibCST tree, you can instead pass in a MetadataWrapper. This
mirrors the fact that you can call visit on a MetadataWrapper in order to iterate over it with a transform.
If you provide a wrapper for the tree and do not set the metadata_resolver parameter specifically, it will
automatically be set to the wrapper for you.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode, or a OneOf /AllOf special
matcher. Unlike matches(), it can also be a MatchIfTrue or DoesNotMatch()matcher, since we are traversing
the tree looking for matches. It cannot be a AtLeastN or AtMostN matcher because these types are wildcards
which can only be usedi inside sequences.

13.1.2 Decorators

The following decorators can be placed onto a method in a visitor or transformer in order to convert it into a visitor
which is called when the provided matcher is true.

libcst.matchers.visit(matcher: BaseMatcherNode)→ Callable[[_CSTVisitFuncT], _CSTVisitFuncT]
A decorator that allows a method inside a MatcherDecoratableTransformer or a
MatcherDecoratableVisitor visitor to be called when visiting a node that matches the provided matcher.
Note that you can use this in combination with call_if_inside() and call_if_not_inside() decorators.
Unlike explicit visit_<Node> and leave_<Node> methods, functions decorated with this decorator cannot
stop child traversal by returning False. Decorated visit functions should always have a return annotation of
None.

There is no restriction on the number of visit decorators allowed on a method. There is also no restriction on the
number of methods that may be decorated with the same matcher. When multiple visit decorators are found on
the same method, they act as a simple or, and the method will be called when any one of the contained matches
is True.

libcst.matchers.leave(matcher: BaseMatcherNode)→ Callable[[_CSTVisitFuncT], _CSTVisitFuncT]
A decorator that allows a method inside a MatcherDecoratableTransformer or a
MatcherDecoratableVisitor visitor to be called when leaving a node that matches the provided matcher.
Note that you can use this in combination with call_if_inside() and call_if_not_inside() decorators.

There is no restriction on the number of leave decorators allowed on a method. There is also no restriction on the
number of methods that may be decorated with the same matcher. When multiple leave decorators are found on
the same method, they act as a simple or, and the method will be called when any one of the contained matches
is True.

The following decorators can be placed onto any existing visit_<Node> or leave_<Node> visitor, as well as any
visitor created using either visit() or leave(). They control whether the visitor itself gets called or skipped by
LibCST when traversing a tree. Note that when a visitor function is skipped, its children will still be visited based on
the rules set forth in Visitors. Namely, if you have a separate visit_<Node> visitor that returns False for a particular
node, we will not traverse to its children.

libcst.matchers.call_if_inside(matcher: BaseMatcherNode)→ Callable[[_CSTVisitFuncT],
_CSTVisitFuncT]

A decorator for visit and leave methods inside a MatcherDecoratableTransformer or a
MatcherDecoratableVisitor. A method that is decorated with this decorator will only be called if it
or one of its parents matches the supplied matcher. Use this to selectively gate visit and leave methods to be
called only when inside of another relevant node. Note that this works for both node and attribute methods, so
you can decorate a visit_<Node> or a visit_<Node>_<Attr> method.

libcst.matchers.call_if_not_inside(matcher: BaseMatcherNode)→ Callable[[_CSTVisitFuncT],
_CSTVisitFuncT]

13.1. Matcher APIs 109

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable

LibCST Documentation

A decorator for visit and leave methods inside a MatcherDecoratableTransformer or a
MatcherDecoratableVisitor. A method that is decorated with this decorator will only be called if it
or one of its parents does not match the supplied matcher. Use this to selectively gate visit and leave methods to
be called only when outside of another relevant node. Note that this works for both node and attribute methods,
so you can decorate a visit_<Node> or a visit_<Node>_<Attr> method.

When using matcher decorators, your visitors must subclass from MatcherDecoratableVisitor instead of libcst.
CSTVisitor, and from MatcherDecoratableTransformer instead of libcst.CSTTransformer. This is so that
visitors and transformers not making use of matcher decorators do not pay the extra cost of their implementation. Note
that if you do not subclass from MatcherDecoratableVisitor or MatcherDecoratableTransformer, you can
still use the matches() function.

Both of these classes are strict subclasses of their corresponding LibCST base class, so they can be used anywhere that
expects a LibCST base class. See Visitors for more information.

class libcst.matchers.MatcherDecoratableVisitor

This class provides all of the features of a libcst.CSTVisitor, and additionally supports various decorators
to control when methods get called when traversing a tree. Use this instead of a libcst.CSTVisitor if you
wish to do more powerful decorator-based visiting.

on_visit(node: CSTNode)→ bool
Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False otherwise.

on_leave(original_node: CSTNode)→ None
Called every time we leave a node, after we’ve visited its children. If the on_visit() function for this
node returns False, this function will still be called on that node.

on_visit_attribute(node: CSTNode, attribute: str)→ None
Called before a node’s child attribute is visited and after we have called on_visit() on the node. A node’s
child attributes are visited in the order that they appear in source that this node originates from.

on_leave_attribute(original_node: CSTNode, attribute: str)→ None
Called after a node’s child attribute is visited and before we have called on_leave() on the node.

matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode)→ bool
A convenience method to call matches() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for matches() as it is identical to this function.

findall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue)→ Sequence[CSTNode]

A convenience method to call findall() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for findall() as it is identical to this function.

extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode)→ Dict[str,
CSTNode | Sequence[CSTNode]] | None

A convenience method to call extract() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extract() as it is identical to this function.

extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue)→ Sequence[Dict[str,
CSTNode | Sequence[CSTNode]]]

110 Chapter 13. Matchers

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

A convenience method to call extractall() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extractall() as it is identical to this function.

replace(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue, replacement: MaybeSentinel |
RemovalSentinel | CSTNode | Callable[[CSTNode, Dict[str, CSTNode | Sequence[CSTNode]]],
MaybeSentinel | RemovalSentinel | CSTNode])→ MaybeSentinel | RemovalSentinel | CSTNode

A convenience method to call replace() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for replace() as it is identical to this function.

class libcst.matchers.MatcherDecoratableTransformer

This class provides all of the features of a libcst.CSTTransformer, and additionally supports various decora-
tors to control when methods get called when traversing a tree. Use this instead of a libcst.CSTTransformer
if you wish to do more powerful decorator-based visiting.

on_visit(node: CSTNode)→ bool
Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False otherwise.

on_leave(original_node: CSTNodeT , updated_node: CSTNodeT)→ CSTNodeT | RemovalSentinel
Called every time we leave a node, after we’ve visited its children. If the on_visit() function for this
node returns False, this function will still be called on that node.

original_node is guaranteed to be the same node as is passed to on_visit(), so it is safe to do state-
based checks using the is operator. Modifications should always be performed on the updated_node so
as to not overwrite changes made by child visits.

Returning RemovalSentinel.REMOVE indicates that the node should be removed from its parent. This is
not always possible, and may raise an exception if this node is required. As a convenience, you can use
RemoveFromParent() as an alias to RemovalSentinel.REMOVE.

on_visit_attribute(node: CSTNode, attribute: str)→ None
Called before a node’s child attribute is visited and after we have called on_visit() on the node. A node’s
child attributes are visited in the order that they appear in source that this node originates from.

on_leave_attribute(original_node: CSTNode, attribute: str)→ None
Called after a node’s child attribute is visited and before we have called on_leave() on the node.

Unlike on_leave(), this function does not allow modifications to the tree and is provided solely for state
management.

matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode)→ bool
A convenience method to call matches() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for matches() as it is identical to this function.

findall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue)→ Sequence[CSTNode]

A convenience method to call findall() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for findall() as it is identical to this function.

extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode)→ Dict[str,
CSTNode | Sequence[CSTNode]] | None

13.1. Matcher APIs 111

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

A convenience method to call extract() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extract() as it is identical to this function.

extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue)→ Sequence[Dict[str,
CSTNode | Sequence[CSTNode]]]

A convenience method to call extractall() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extractall() as it is identical to this function.

replace(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode |
MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue, replacement: MaybeSentinel |
RemovalSentinel | CSTNode | Callable[[CSTNode, Dict[str, CSTNode | Sequence[CSTNode]]],
MaybeSentinel | RemovalSentinel | CSTNode])→ MaybeSentinel | RemovalSentinel | CSTNode

A convenience method to call replace() without requiring an explicit parameter for metadata. Since
our instance is an instance of libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for replace() as it is identical to this function.

13.1.3 Traversal Order

Visit and leave functions created using visit() or leave() follow the traversal order rules laid out in LibCST’s visitor
Traversal Order with one additional rule. Any visit function created using the visit() decorator will be called before
a visit_<Node> function if it is defined for your visitor. The order in which various visit functions which are created
with visit() are called is indeterminate, but all such functions will be called before calling the visit_<Node>
method. Similarly, any leave function created using the leave() decorator will be called after a leave_<Node>
function if it is defined for your visitor. The order in which various leave functions which are created with leave() are
called is indeterminate, but all such functions will be called after calling the visit_<Node> function if it is defined
for your visitor.

This has a few implications. The first is that if you return False from a visit_<Node> method, we are guaranteed to
call your decorated visit functions as well. Second, when modifying a node in both leave_<Node> and a visitor created
with leave(), the original_nodewill be unchanged for both and the updated_node available to the decorated leave
method will be the node that is returned by the leave_<Node> method. Chaining modifications across multiple leave
functions is supported, but must be done with care.

13.2 Matcher Types

13.2.1 Concrete Matchers

For each node found in Nodes, a corresponding concrete matcher has been generated. Each matcher has attributes
identical to its LibCST node counterpart. For example, libcst.Expr includes the value and semicolon attributes,
and therefore libcst.matchers.Expr similarly includes the same attributes. Just as libcst.Expr’s value is typed
as taking a libcst.BaseExpression, libcst.matchers.Expr’s value is typed as taking a libcst.matchers.
BaseExpression. For every node that exists in LibCST, both concrete and abstract, a corresponding matcher has been
defined.

There are a few special cases to the rules laid out above. For starters, matchers don’t support evaluating
MaybeSentinel. There is no way to specify that you wish to match against a MaybeSentinel except with the
DoNotCare() matcher. This tends not to be an issue in practice because MaybeSentinel is only found on syntax
nodes.

112 Chapter 13. Matchers

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

While there are base classes such as libcst.matchers.BaseExpression, you cannot match directly on them. They
are provided for typing purposes only in order to exactly match the types on LibCST node attributes. If you need to
match on all concrete subclasses of a base class, we recommend using the special matcher OneOf .

class libcst.matchers.BaseMatcherNode

Base class that all concrete matchers subclass from. OneOf and AllOf also subclass from this in order to allow
them to be used in any place that a concrete matcher is allowed. This means that, for example, you can call
matches() with a concrete matcher, or a OneOf with several concrete matchers as options.

13.2.2 Special Matchers

Special matchers are matchers that don’t have a corresponding LibCST node. Concrete matchers only match against
their corresponding LibCST node, limiting their use under certain circumstances. Special matchers fill in the gap by
allowing higher-level logic constructs such as inversion. You can use any special matcher in place of a concrete matcher
when specifying matcher attributes. Additionally, you can also use the AllOf and OneOf special matchers in place of
a concrete matcher when calling matches() or using decorators.

class libcst.matchers.OneOf

Matcher that matches any one of its options. Useful when you want to match against one of several options for
a single node. You can also construct a OneOf matcher by using Python’s bitwise or operator with concrete
matcher classes.

For example, you could match against True/False like:

m.OneOf(m.Name("True"), m.Name("False"))

Or you could use the shorthand, like:

m.Name("True") | m.Name("False")

property options: Sequence[_MatcherT]

The normalized list of options that we can choose from to satisfy a OneOf matcher. If any of these matchers
are true, the OneOf matcher will also be considered a match.

class libcst.matchers.AllOf

Matcher that matches all of its options. Useful when you want to match against a concrete matcher and
a MatchIfTrue at the same time. Also useful when you want to match against a concrete matcher and a
DoesNotMatch() at the same time. You can also construct a AllOf matcher by using Python’s bitwise and
operator with concrete matcher classes.

For example, you could match against True in a roundabout way like:

m.AllOf(m.Name(), m.Name("True"))

Or you could use the shorthand, like:

m.Name() & m.Name("True")

Similar to OneOf , this can be used in place of any concrete matcher.

Real-world cases where AllOf is useful are hard to come by but they are still provided for the limited edge cases
in which they make sense. In the example above, we are redundantly matching against any LibCST Name node
as well as LibCST Name nodes that have the value of True. We could drop the first option entirely and get the
same result. Often, if you are using a AllOf , you can refactor your code to be simpler.

For example, the following matches any function call to foo, and any function call which takes zero arguments:

13.2. Matcher Types 113

https://docs.python.org/3/library/typing.html#typing.Sequence

LibCST Documentation

m.AllOf(m.Call(func=m.Name("foo")), m.Call(args=()))

This could be refactored into the following equivalent concrete matcher:

m.Call(func=m.Name("foo"), args=())

property options: Sequence[_MatcherT]

The normalized list of options that we can choose from to satisfy a AllOf matcher. If all of these matchers
are true, the AllOf matcher will also be considered a match.

class libcst.matchers.TypeOf

Matcher that matches any one of the given types. Useful when you want to work with trees where a common
property might belong to more than a single type.

For example, if you want either a binary operation or a boolean operation where the left side has a name foo:

m.TypeOf(m.BinaryOperation, m.BooleanOperation)(left = m.Name("foo"))

Or you could use the shorthand, like:

(m.BinaryOperation | m.BooleanOperation)(left = m.Name("foo"))

Also TypeOf matchers can be used with initalizing in the default state of other node matchers (without passing
any extra patterns):

m.Name | m.SimpleString

The will be equal to:

m.OneOf(m.Name(), m.SimpleString())

property initalized: bool

property options: Iterator[BaseMatcherNode]

libcst.matchers.DoesNotMatch(obj: _OtherNodeT)→ _OtherNodeT
Matcher helper that inverts the match result of its child. You can also invert a matcher by using Python’s bitwise
invert operator on concrete matchers or any special matcher.

For example, the following matches against any identifier that isn’t True/False:

m.DoesNotMatch(m.OneOf(m.Name("True"), m.Name("False")))

Or you could use the shorthand, like:

~(m.Name("True") | m.Name("False"))

This can be used in place of any concrete matcher as long as it is not the root matcher. Calling matches()
directly on a DoesNotMatch() is redundant since you can invert the return of matches() using a bitwise not.

class libcst.matchers.MatchIfTrue

Matcher that matches if its child callable returns True. The child callable should take one argument which is the
attribute on the LibCST node we are trying to match against. This is useful if you want to do complex logic to
determine if an attribute should match or not. One example of this is the MatchRegex()matcher build on top of
MatchIfTrue which takes a regular expression and matches any string attribute where a regex match is found.

For example, to match on any identifier spelled with the letter e:

114 Chapter 13. Matchers

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator

LibCST Documentation

m.Name(value=m.MatchIfTrue(lambda value: "e" in value))

This can be used in place of any concrete matcher as long as it is not the root matcher. Calling matches()
directly on a MatchIfTrue is redundant since you can just call the child callable directly with the node you are
passing to matches().

property func: Callable[[_MatchIfTrueT], bool]

The function that we will call with a LibCST node in order to determine if we match. If the function returns
True then we consider ourselves to be a match.

libcst.matchers.MatchRegex(regex: str | Pattern[str])→ MatchIfTrue[str]
Used as a convenience wrapper to MatchIfTrue which allows for matching a string attribute against a regex.
regex can be any regular expression string or a compiled Pattern. This uses Python’s re module under the
hood and is compatible with syntax documented on docs.python.org.

For example, to match against any identifier that is at least one character long and only contains alphabetical
characters:

m.Name(value=m.MatchRegex(r'[A-Za-z]+'))

This can be used in place of any string literal when constructing a concrete matcher.

class libcst.matchers.MatchMetadata

Matcher that looks up the metadata on the current node using the provided metadata provider and compares
the value on the node against the value provided to MatchMetadata. If the metadata provider is unresolved, a
LookupError exeption will be raised and ask you to provide a MetadataWrapper. If the metadata value does
not exist for a particular node, MatchMetadata will be considered not a match.

For example, to match against any function call which has one parameter which is used in a load expression
context:

m.Call(
args=[

m.Arg(
m.MatchMetadata(

meta.ExpressionContextProvider,
meta.ExpressionContext.LOAD,

)
)

]
)

To match against any Name node for the identifier foo which is the target of an assignment:

m.Name(
value="foo",
metadata=m.MatchMetadata(

meta.ExpressionContextProvider,
meta.ExpressionContext.STORE,

)
)

This can be used in place of any concrete matcher as long as it is not the root matcher. Calling matches()
directly on a MatchMetadata is redundant since you can just check the metadata on the root node that you are
passing to matches().

13.2. Matcher Types 115

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/exceptions.html#LookupError

LibCST Documentation

property key: Type[BaseMetadataProvider[object]]

The metadata provider that we will use to fetch values when identifying whether a node matches this
matcher. We compare the value returned from the metadata provider to the value provided in value when
determining a match.

property value: object

The value that we will compare against the return from the metadata provider for each node when deter-
mining a match.

class libcst.matchers.MatchMetadataIfTrue

Matcher that looks up the metadata on the current node using the provided metadata provider and passes it
to a callable which can inspect the metadata further, returning True if the matcher should be considered a
match. If the metadata provider is unresolved, a LookupError exeption will be raised and ask you to pro-
vide a MetadataWrapper. If the metadata value does not exist for a particular node, MatchMetadataIfTrue
will be considered not a match.

For example, to match against any arg whose qualified name might be typing.Dict:

m.Call(
args=[

m.Arg(
m.MatchMetadataIfTrue(

meta.QualifiedNameProvider,
lambda qualnames: any(n.name == "typing.Dict" for n in qualnames)

)
)

]
)

To match against any Name node for the identifier foo as long as that identifier is found at the beginning of an
unindented line:

m.Name(
value="foo",
metadata=m.MatchMetadataIfTrue(

meta.PositionProvider,
lambda position: position.start.column == 0,

)
)

This can be used in place of any concrete matcher as long as it is not the root matcher. Calling matches()
directly on a MatchMetadataIfTrue is redundant since you can just check the metadata on the root node that
you are passing to matches().

property key: Type[BaseMetadataProvider[object]]

The metadata provider that we will use to fetch values when identifying whether a node matches this
matcher. We pass the value returned from the metadata provider to the callable given to us in func.

property func: Callable[[object], bool]

The function that we will call with a value retrieved from the metadata provider provided in key. If the
function returns True then we consider ourselves to be a match.

libcst.matchers.SaveMatchedNode(matcher: _OtherNodeT , name: str)→ _OtherNodeT
Matcher helper that captures the matched node that matched against a matcher class, making it available in the
dictionary returned by extract() or extractall().

116 Chapter 13. Matchers

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

For example, the following will match against any binary operation whose left and right operands are not inte-
gers, saving those expressions for later inspection. If used inside extract() or extractall(), the resulting
dictionary will contain the keys left_operand and right_operand:

m.BinaryOperation(
left=m.SaveMatchedNode(

m.DoesNotMatch(m.Integer()),
"left_operand",

),
right=m.SaveMatchedNode(

m.DoesNotMatch(m.Integer()),
"right_operand",

),
)

This can be used in place of any concrete matcher as long as it is not the root matcher. Calling extract()
directly on a SaveMatchedNode() is redundant since you already have the reference to the node itself.

libcst.matchers.DoNotCare()→ DoNotCareSentinel
Used when you want to match exactly one node, but you do not care what node it is. Useful inside sequences
such as a libcst.matchers.Call’s args attribte. You do not need to use this for concrete matcher attributes
since DoNotCare() is already the default.

For example, the following matcher would match against any function calls with three arguments, regardless of
the arguments themselves and regardless of the function name that we were calling:

m.Call(args=[m.DoNotCare(), m.DoNotCare(), m.DoNotCare()])

13.2.3 Sequence Wildcard Matchers

Sequence wildcard matchers are matchers that only get used when constructing a sequence to match against. Not all
LibCST nodes have attributes which are sequences, but for those that do, sequence wildcard matchers offer a great
degree of flexibility. Unlike all other matcher types, these allow you to match against more than one LibCST node,
much like wildcards in regular expressions do.

LibCST does not implicitly match on partial sequences for you. So, when matching against a sequence you will need
to provide a complete pattern. This often means using helpers such as ZeroOrMore() as the first and last element of
your sequence. Think of it as the difference between Python’s re.match and re.fullmatch functions. LibCST matchers
behave like the latter so that it is possible to specify sequences which must start with, end with or be exactly equal to
some pattern.

class libcst.matchers.AtLeastN

Matcher that matches n or more LibCST nodes in a row in a sequence. AtLeastN defaults to matching against
the DoNotCare() matcher, so if you do not specify a matcher as a child, AtLeastN will match only by count.
If you do specify a matcher as a child, AtLeastN will instead make sure that each LibCST node matches the
matcher supplied.

For example, this will match all function calls with at least 3 arguments:

m.Call(args=[m.AtLeastN(n=3)])

This will match all function calls with 3 or more integer arguments:

m.Call(args=[m.AtLeastN(n=3, matcher=m.Arg(m.Integer()))])

13.2. Matcher Types 117

https://docs.python.org/3/library/re.html#re.match
https://docs.python.org/3/library/re.html#re.fullmatch

LibCST Documentation

You can combine sequence matchers with concrete matchers and special matchers and it will behave as you
expect. For example, this will match all function calls that have 2 or more integer arguments in a row, followed
by any arbitrary argument:

m.Call(args=[m.AtLeastN(n=2, matcher=m.Arg(m.Integer())), m.DoNotCare()])

And finally, this will match all function calls that have at least 5 arguments, the final one being an integer:

m.Call(args=[m.AtLeastN(n=4), m.Arg(m.Integer())])

property n: int

The number of nodes in a row that must match AtLeastN.matcher for this matcher to be considered a
match. If there are less than n matches, this matcher will not be considered a match. If there are equal to
or more than n matches, this matcher will be considered a match.

property matcher: _MatcherT | DoNotCareSentinel

The matcher which each node in a sequence needs to match.

libcst.matchers.ZeroOrMore(matcher: _MatcherT | DoNotCareSentinel = DoNotCareSentinel.DEFAULT)→
AtLeastN[_MatcherT | DoNotCareSentinel]

Used as a convenience wrapper to AtLeastN when n is equal to 0. Use this when you want to match against any
number of nodes in a sequence.

For example, this will match any function call with zero or more arguments, as long as all of the arguments are
integers:

m.Call(args=[m.ZeroOrMore(m.Arg(m.Integer()))])

This will match any function call where the first argument is an integer and it doesn’t matter what the rest of the
arguments are:

m.Call(args=[m.Arg(m.Integer()), m.ZeroOrMore()])

You will often want to use ZeroOrMore on both sides of a concrete matcher in order to match against sequences
that contain a particular node in an arbitrary location. For example, the following will match any function call
that takes in at least one string argument anywhere:

m.Call(args=[m.ZeroOrMore(), m.Arg(m.SimpleString()), m.ZeroOrMore()])

class libcst.matchers.AtMostN

Matcher that matches n or fewer LibCST nodes in a row in a sequence. AtMostN defaults to matching against the
DoNotCare() matcher, so if you do not specify a matcher as a child, AtMostN will match only by count. If you
do specify a matcher as a child, AtMostN will instead make sure that each LibCST node matches the matcher
supplied.

For example, this will match all function calls with 3 or fewer arguments:

m.Call(args=[m.AtMostN(n=3)])

This will match all function calls with 0, 1 or 2 string arguments:

m.Call(args=[m.AtMostN(n=2, matcher=m.Arg(m.SimpleString()))])

You can combine sequence matchers with concrete matchers and special matchers and it will behave as you
expect. For example, this will match all function calls that have 0, 1 or 2 string arguments in a row, followed by
an arbitrary argument:

118 Chapter 13. Matchers

https://docs.python.org/3/library/functions.html#int

LibCST Documentation

m.Call(args=[m.AtMostN(n=2, matcher=m.Arg(m.SimpleString())), m.DoNotCare()])

And finally, this will match all function calls that have at least 2 arguments, the final one being a string:

m.Call(args=[m.AtMostN(n=2), m.Arg(m.SimpleString())])

property n: int

The number of nodes in a row that must match AtLeastN.matcher for this matcher to be considered a
match. If there are less than or equal to n matches, then this matcher will be considered a match. Any more
than n matches in a row and this matcher will stop matching and be considered not a match.

property matcher: _MatcherT | DoNotCareSentinel

The matcher which each node in a sequence needs to match.

libcst.matchers.ZeroOrOne(matcher: _MatcherT | DoNotCareSentinel = DoNotCareSentinel.DEFAULT)→
AtMostN[_MatcherT | DoNotCareSentinel]

Used as a convenience wrapper to AtMostN when n is equal to 1. This is effectively a maybe clause.

For example, this will match any function call with zero or one integer argument:

m.Call(args=[m.ZeroOrOne(m.Arg(m.Integer()))])

This will match any function call that has two or three arguments, and the first and last arguments are strings:

m.Call(args=[m.Arg(m.SimpleString()), m.ZeroOrOne(), m.Arg(m.SimpleString())])

13.2. Matcher Types 119

https://docs.python.org/3/library/functions.html#int

LibCST Documentation

120 Chapter 13. Matchers

CHAPTER

FOURTEEN

CODEMODS

LibCST defines a codemod as an automated refactor that can be applied to a codebase of arbitrary size. Codemods
are provided as a framework for writing higher-order transforms that consist of other, simpler transforms. It includes
provisions for quickly creating a command-line interface to execute a codemod.

14.1 Codemod Base

All codemods derive from a common base, Codemod . This class includes a context, automatic metadata resolution and
multi-pass transform support. Codemods are intended to be executed using the transform_module() interface.

class libcst.codemod.Codemod

Abstract base class that all codemods must subclass from. Classes wishing to perform arbitrary, non-visitor-based
mutations on a tree should subclass from this class directly. Classes wishing to perform visitor-based mutation
should instead subclass from ContextAwareTransformer.

Note that a Codemod is a subclass of MetadataDependent, meaning that you can declare metadata dependen-
cies with the METADATA_DEPENDENCIES class property and while you are executing a transform you can call
get_metadata() to retrieve the resolved metadata.

should_allow_multiple_passes()→ bool
Override this and return True to allow your transform to be called repeatedly until the tree doesn’t change
between passes. By default, this is off, and should suffice for most transforms.

warn(warning: str)→ None
Emit a warning that is displayed to the user who has invoked this codemod.

property module: Module

Reference to the currently-traversed module. Note that this is only available during the execution of a code-
mod. The module reference is particularly handy if you want to use libcst.Module.code_for_node()
or libcst.Module.config_for_parsing and don’t wish to track a reference to the top-level module
manually.

abstract transform_module_impl(tree: Module)→ Module
Override this with your transform. You should take in the tree, optionally mutate it and then return the
mutated version. The module reference and all calculated metadata are available for the lifetime of this
function.

transform_module(tree: Module)→ Module
Transform entrypoint which handles multi-pass logic and metadata calculation for you. This is the method
that you should call if you wish to invoke a codemod directly. This is the method that is called by
transform_module().

121

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

class libcst.codemod.CodemodContext

A context holding all information that is shared amongst all transforms and visitors in a single codemod invo-
cation. When chaining multiple transforms together, the context holds the state that needs to be passed between
transforms. The context is responsible for keeping track of metadata wrappers and the filename of the file that is
being modified (if available).

warnings: List[str]

List of warnings gathered while running a codemod. Add to this list by calling warn()method from a class
that subclasses from Codemod , ContextAwareTransformer or ContextAwareVisitor.

scratch: Dict[str, Any]

Scratch dictionary available for codemods which are spread across multiple transforms. Codemods are free
to add to this at will.

filename: str | None = None

The current filename if a codemod is being executed against a file that lives on disk. Populated by libcst.
codemod.parallel_exec_transform_with_prettyprint() when running codemods from the com-
mand line.

full_module_name: str | None = None

The current module if a codemod is being executed against a file that lives on disk, and the repository root
is correctly configured. This Will take the form of a dotted name such as foo.bar.baz for a file in the
repo named foo/bar/baz.py.

full_package_name: str | None = None

The current package if a codemod is being executed against a file that lives on disk, and the repository root
is correctly configured. This Will take the form of a dotted name such as foo.bar for a file in the repo
named foo/bar/baz.py

wrapper: MetadataWrapper | None = None

The current top level metadata wrapper for the module being modified. To access computed metadata when
inside an actively running codemod, use the get_metadata() method on Codemod .

metadata_manager: FullRepoManager | None = None

The current repo-level metadata manager for the active codemod.

property module: Module | None

The current top level module being modified. As a convenience, you can use the module property on
Codemod to refer to this when inside an actively running codemod.

As a convenience, LibCST-compatible visitors are provided which extend the feature-set of Codemod to LibCST visitors
and transforms. Remember that ContextAwareTransformer is still a Codemod , so you should still execute it using
transform_module().

class libcst.codemod.ContextAwareTransformer

A transformer which visits using LibCST. Allows visitor-based mutation of a tree. Classes wishing to
do arbitrary non-visitor-based mutation on a tree should instead subclass from Codemod and implement
transform_module_impl(). This is a subclass of MatcherDecoratableTransformer so all features of
matchers as well as CSTTransformer are available to subclasses of this class.

class libcst.codemod.ContextAwareVisitor

A visitor which visits using LibCST. Allows visitor-based collecting of info on a tree. All codemods
which wish to implement an information collector should subclass from this instead of directly from
MatcherDecoratableVisitor or CSTVisitor since this provides access to the current codemod context.
As a result, this class allows access to metadata which was calculated in a parent Codemod through the
get_metadata() method.

122 Chapter 14. Codemods

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

Note that you cannot directly run a ContextAwareVisitor using transform_module() because visitors by
definition do not transform trees. However, you can instantiate a ContextAwareVisitor inside a codemod and
pass it to the visitmethod on any node in order to run information gathering with metadata and context support.

Remember that a ContextAwareVisitor is a subclass of MetadataDependent, meaning that you still need
to declare your metadata dependencies with METADATA_DEPENDENCIES before you can retrieve metadata using
get_metadata(), even if the parent codemod has listed its own metadata dependencies. Note also that the
dependencies listed on this class must be a strict subset of the dependencies listed in the parent codemod.

warn(warning: str)→ None
Emit a warning that is displayed to the user who has invoked this codemod.

property module: Module

Reference to the currently-traversed module. Note that this is only available during a transform itself.

It is often necessary to bail out of a codemod mid-operation when you realize that you do not want to operate on a
module. This can be for any reason such as realizing the module includes some operation that you do not support. If you
wish to skip a module, you can raise the SkipFile exception. For codemods executed using the transform_module()
interface, all warnings emitted up to the exception being thrown will be preserved in the result.

class libcst.codemod.SkipFile

Raise this exception to skip codemodding the current file.

The exception message should be the reason for skipping.

Finally, its often easier to test codemods by writing verification tests instead of running repeatedly on your project.
LibCST makes this easy with CodemodTest. Often you can develop the majority of your codemod using just tests,
augmenting functionality when you run into an unexpected edge case when running it against your repository.

class libcst.codemod.CodemodTest

Base test class for a Codemod test. Provides facilities for auto-instantiating and executing a codemod, given the
args/kwargs that should be passed to it. Set the TRANSFORM class attribute to the Codemod class you wish to test
and call assertCodemod() inside your test method to verify it transforms various source code chunks correctly.

Note that this is a subclass of UnitTest so any CodemodTest can be executed using your favorite test runner
such as the unittest module.

TRANSFORM: Type[Codemod] = Ellipsis

classmethod addClassCleanup(function, / , *args, **kwargs)
Same as addCleanup, except the cleanup items are called even if setUpClass fails (unlike tearDownClass).

assertCodeEqual(expected: str, actual: str)→ None
Given an expected and actual code string, makes sure they equal. This ensures that both the expected and
actual are sanitized, so its safe to use this on strings that may have come from a triple-quoted multi-line
string.

assertCodemod(before: str, after: str, *args: object, context_override: CodemodContext | None = None,
python_version: str | None = None, expected_warnings: Sequence[str] | None = None,
expected_skip: bool = False, **kwargs: object)→ None

Given a before and after code string, and any args/kwargs that should be passed to the codemod constructor
specified in TRANSFORM , validate that the codemod executes as expected. Verify that the codemod com-
pletes successfully, unless the expected_skip option is set to True, in which case verify that the codemod
skips. Optionally, a CodemodContext can be provided. If none is specified, a default, empty context is
created for you. Additionally, the python version for the code parser can be overridden to a valid python
version string such as “3.6”. If none is specified, the version of the interpreter running your tests will be
used. Also, a list of warning strings can be specified and assertCodemod() will verify that the codemod
generates those warnings in the order specified. If it is left out, warnings are not checked.

14.1. Codemod Base 123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

assertNoLogs(logger=None, level=None)
Fail unless no log messages of level level or higher are emitted on logger_name or its children.

This method must be used as a context manager.

classmethod doClassCleanups()

Execute all class cleanup functions. Normally called for you after tearDownClass.

classmethod enterClassContext(cm)

Same as enterContext, but class-wide.

enterContext(cm)

Enters the supplied context manager.

If successful, also adds its __exit__ method as a cleanup function and returns the result of the __enter__
method.

static make_fixture_data(data: str)→ str
Given a code string originting from a multi-line triple-quoted string, normalize the code using dedent and
ensuring a trailing newline is present.

14.2 Execution Interface

As documented in the Codemod Base section above, codemods are meant to be programmatically executed using
transform_module(). Executing in this manner handles all of the featureset of codemods, including metadata cal-
culation and exception handling.

libcst.codemod.transform_module(transformer: Codemod, code: str, *, python_version: str | None = None)
→ TransformSuccess | TransformFailure | TransformExit | TransformSkip

Given a module as represented by a string and a Codemod that we wish to run, execute the codemod on
the code and return a TransformResult. This should never raise an exception. On success, this returns a
TransformSuccess containing any generated warnings as well as the transformed code. If the codemod is in-
terrupted with a Ctrl+C, this returns a TransformExit. If the codemod elected to skip by throwing a SkipFile
exception, this will return a TransformSkip containing the reason for skipping as well as any warnings that
were generated before the codemod decided to skip. If the codemod throws an unexpected exception, this will
return a TransformFailure containing the exception that occured as well as any warnings that were generated
before the codemod crashed.

libcst.codemod.TransformResult

alias of Union[TransformSuccess, TransformFailure, TransformExit, TransformSkip]

class libcst.codemod.TransformSuccess

A TransformResult used when the codemod was successful. Stores all the information we might need to
display to the user upon success, as well as the transformed file contents.

warning_messages: Sequence[str]

All warning messages that were generated during the codemod.

code: str

The updated code, post-codemod.

class libcst.codemod.TransformFailure

A TransformResult used when the codemod failed. Stores all the information we might need to display to the
user upon a failure.

124 Chapter 14. Codemods

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

warning_messages: Sequence[str]

All warning messages that were generated before the codemod crashed.

error: Exception

The exception that was raised during the codemod.

traceback_str: str

The traceback string that was recorded at the time of exception.

class libcst.codemod.TransformSkip

A TransformResult used when the codemod requested to be skipped. This could be because it’s a generated
file, or due to filename blacklist, or because the transform raised SkipFile.

skip_reason: SkipReason

The reason that we skipped codemodding this module.

skip_description: str

The description populated from the SkipFile exception.

warning_messages: Sequence[str] = ()

All warning messages that were generated before the codemod decided to skip.

class libcst.codemod.SkipReason

An enumeration of all valid reasons for a codemod to skip.

GENERATED = 'generated'

The module was skipped because we detected that it was generated code, and we were configured to skip
generated files.

BLACKLISTED = 'blacklisted'

The module was skipped because we detected that it was blacklisted, and we were configured to skip black-
listed files.

OTHER = 'other'

The module was skipped because the codemod requested us to skip using the SkipFile exception.

class libcst.codemod.TransformExit

A TransformResult used when the codemod was interrupted by the user (e.g. KeyboardInterrupt).

warning_messages: Sequence[str] = ()

An empty list of warnings, included so that all TransformResult have a warning_messages attribute.

14.3 Command-Line Support

LibCST includes additional support to facilitate faster development of codemods which are to be run at the command-
line. This is achieved through the CodemodCommand class and the codemod utility which lives inside libcst.tool.
The CodemodCommand class provides a codemod description and an interface to add arguments to the command-line.
This is translated to a custom help message and command-line options that a user can provide when running a codemod
at the command-line.

For a brief overview of supported universal options, run the codemod utility like so:

python3 -m libcst.tool codemod --help

14.3. Command-Line Support 125

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

The utility provides support for gathering up and parallelizing codemods across a series of files or directories, auto-
formatting changed code according to a configured formatter, generating a unified diff of changes instead of applying
them to files, taking code from stdin and codemodding it before returning to stdout, and printing progress and warnings
to stderr during execution of a codemod.

Help is auto-customized if a codemod class is provided, including any added options and the codemod description. For
an example, run the codemod utility like so:

python3 -m libcst.tool codemod noop.NOOPCommand --help

A second utility, list, can list all available codemods given your configuration. Run it like so:

python3 -m libcst.tool list

Finally, to set up a directory for codemodding using these tools, including additional directories where codemods can
be found, use the initialize utility. To see help for how to use this, run the initialize utility like so:

python3 -m libcst.tool initialize --help

The above tools operate against any codemod which subclasses from CodemodCommand . Remember that
CodemodCommand is a subclass of Codemod , so all of the features documented in the Codemod Base section are
available in addition to command-line support. Any command-line enabled codemod can also be programmatically
instantiated and invoked using the above-documented transform_module() interface.

class libcst.codemod.CodemodCommand

A Codemod which can be invoked on the command-line using the libcst.tool codemod utility. It behaves
like any other codemod in that it can be instantiated and run identically to a Codemod . However, it provides
support for providing help text and command-line arguments to libcst.tool codemod as well as facilities for
automatically running certain common transforms after executing your transform_module_impl().

The following list of transforms are automatically run at this time:

• AddImportsVisitor (adds needed imports to a module).

• RemoveImportsVisitor (removes unreferenced imports from a module).

DESCRIPTION: str = 'No description.'

An overrideable description attribute so that codemods can provide a short summary of what they do. This
description will show up in command-line help as well as when listing available codemods.

static add_args(arg_parser: ArgumentParser)→ None
Override this to add arguments to the CLI argument parser. These args will show up when the user invokes
libcst.tool codemod with --help. They will also be presented to your class’s __init__ method. So,
if you define a command with an argument ‘foo’, you should also have a corresponding ‘foo’ positional or
keyword argument in your class’s __init__ method.

abstract transform_module_impl(tree: Module)→ Module
Override this with your transform. You should take in the tree, optionally mutate it and then return the
mutated version. The module reference and all calculated metadata are available for the lifetime of this
function.

Additionally, a few convenience classes have been provided which take the boilerplate out of common types of code-
mods:

class libcst.codemod.VisitorBasedCodemodCommand

A command that acts identically to a visitor-based transform, but also has the support of add_args() and run-
ning supported helper transforms after execution. See CodemodCommand and ContextAwareTransformer for
additional documentation.

126 Chapter 14. Codemods

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

class libcst.codemod.MagicArgsCodemodCommand

A “magic” args command, which auto-magically looks up the transforms that are yielded from
get_transforms() and instantiates them using values out of the context. Visitors yielded in
get_transforms() must have constructor arguments that match a key in the context scratch . The easiest
way to guarantee that is to use add_args() to add a command arg that will be parsed for each of the args. How-
ever, if you wish to chain transforms, adding to the scratch in one transform will make the value available to the
constructor in subsequent transforms as well as the scratch for subsequent transforms.

abstract get_transforms()→ Generator[Type[Codemod], None, None]
A generator which yields one or more subclasses of Codemod . In the general case, you will usually yield
a series of classes, but it is possible to programmatically decide which classes to yield depending on the
contents of the context scratch .

Note that you should yield classes, not instances of classes, as the point of MagicArgsCodemodCommand
is to instantiate them for you with the contents of scratch .

14.4 Command-Line Toolkit

Several helpers for constructing a command-line interface are provided. These are used in the codemod utility to provide
LibCST’s de-facto command-line interface but they are also available to be used directly in the case that circumstances
demand a custom command-line tool.

libcst.codemod.gather_files(files_or_dirs: Sequence[str], *, include_stubs: bool = False)→ List[str]
Given a list of files or directories (can be intermingled), return a list of all python files that exist at those locations.
If include_stubs is True, this will include .py and .pyi stub files. If it is False, only .py files will be
included in the returned list.

libcst.codemod.exec_transform_with_prettyprint(transform: Codemod, code: str, *, include_generated:
bool = False, generated_code_marker: str =
'@generated', format_code: bool = False,
formatter_args: Sequence[str] = (), python_version:
str | None = None)→ str | None

Given an instantiated codemod and a string representing a module, transform that code by executing the trans-
form, optionally invoking the formatter and finally printing any generated warnings to stderr. If the code includes
the generated marker at any spot and include_generated is not set to True, the code will not be modified.
If format_code is set to False or the instantiated codemod does not modify the code, the code will not be
formatted. If a python_version is provided, then we will parse the module using this version. Otherwise, we
will use the version of the currently executing python binary.

In all cases a module will be returned. Whether it is changed depends on the input parameters as well as the
codemod itself.

14.4. Command-Line Toolkit 127

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

libcst.codemod.parallel_exec_transform_with_prettyprint(transform: Codemod, files: Sequence[str],
*, jobs: int | None = None, unified_diff: int
| None = None, include_generated: bool =
False, generated_code_marker: str =
'@generated', format_code: bool = False,
formatter_args: Sequence[str] = (),
show_successes: bool = False,
hide_generated: bool = False,
hide_blacklisted: bool = False,
hide_progress: bool = False,
blacklist_patterns: Sequence[str] = (),
python_version: str | None = None,
repo_root: str | None = None)→
ParallelTransformResult

Given a list of files and an instantiated codemod we should apply to them, fork and apply the codemod in parallel
to all of the files, including any configured formatter. The jobs parameter controls the maximum number of
in-flight transforms, and needs to be at least 1. If not included, the number of jobs will automatically be set to
the number of CPU cores. If unified_diff is set to a number, changes to files will be printed to stdout with
unified_diff lines of context. If it is set to None or left out, files themselves will be updated with changes and
formatting. If a python_version is provided, then we will parse each source file using this version. Otherwise,
we will use the version of the currently executing python binary.

A progress indicator as well as any generated warnings will be printed to stderr. To supress the interactive
progress indicator, set hide_progress to True. Files that include the generated code marker will be skipped
unless the include_generated parameter is set to True. Similarly, files that match a supplied blacklist of
regex patterns will be skipped. Warnings for skipping both blacklisted and generated files will be printed to
stderr along with warnings generated by the codemod unless hide_blacklisted and hide_generated are set
to True. Files that were successfully codemodded will not be printed to stderr unless show_successes is set
to True.

To make this API possible, we take an instantiated transform. This is due to the fact that lambdas are not pickleable
and pickling functions is undefined. This means we’re implicitly relying on fork behavior on UNIX-like systems,
and this function will not work on Windows systems. To create a command-line utility that runs on Windows,
please instead see exec_transform_with_prettyprint().

class libcst.codemod.ParallelTransformResult

The result of running parallel_exec_transform_with_prettyprint() against a series of files. This is a
simple summary, with counts for number of successfully codemodded files, number of files that we failed to
codemod, number of warnings generated when running the codemod across the files, and the number of files that
we skipped when running the codemod.

successes: int

Number of files that we successfully transformed.

failures: int

Number of files that we failed to transform.

warnings: int

Number of warnings generated when running transform across files.

skips: int

Number of files skipped because they were blacklisted, generated or the codemod requested to skip.

libcst.codemod.diff_code(oldcode: str, newcode: str, context: int, *, filename: str | None = None)→ str
Given two strings representing a module before and after a codemod, produce a unified diff of the changes with
context lines of context. Optionally, assign the filename to the change, and if it is not available, assume that

128 Chapter 14. Codemods

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

the change was performed on stdin/stdout. If no change is detected, return an empty string instead of returning
an empty unified diff. This is comparable to revision control software which only shows differences for files that
have changed.

14.5 Library of Transforms

LibCST additionally includes a library of transforms to reduce the need for boilerplate inside codemods. As of now,
the list includes the following helpers.

class libcst.codemod.visitors.GatherImportsVisitor

Gathers all imports in a module and stores them as attributes on the instance. Intended to be instantiated and
passed to a Module visit() method in order to gather up information about imports on a module. Note that
this is not a substitute for scope analysis or qualified name support. Please see Scope Analysis for a more robust
way of determining the qualified name and definition for an arbitrary node.

After visiting a module the following attributes will be populated:

module_imports
A sequence of strings representing modules that were imported directly, such as in the case of
import typing. Each module directly imported but not aliased will be included here.

object_mapping
A mapping of strings to sequences of strings representing modules where we imported objects
from, such as in the case of from typing import Optional. Each from import that was not
aliased will be included here, where the keys of the mapping are the module we are importing
from, and the value is a sequence of objects we are importing from the module.

module_aliases
A mapping of strings representing modules that were imported and aliased, such as in the case
of import typing as t. Each module imported this way will be represented as a key in this
mapping, and the value will be the local alias of the module.

alias_mapping
A mapping of strings to sequences of tuples representing modules where we imported objects
from and aliased using as syntax, such as in the case of from typing import Optional as
opt. Each from import that was aliased will be included here, where the keys of the mapping are
the module we are importing from, and the value is a tuple representing the original object name
and the alias.

all_imports
A collection of all Import and ImportFrom statements that were encountered in the module.

class libcst.codemod.visitors.GatherExportsVisitor

Gathers all explicit exports in a module and stores them as attributes on the instance. Intended to be instantiated
and passed to a Module visit()method in order to gather up information about exports specified in an __all__
variable inside a module.

After visiting a module the following attributes will be populated:

explicit_exported_objects
A sequence of strings representing objects that the module exports directly. Note that when
__all__ is absent, this attribute does not store default exported objects by name.

For more information on __all__, please see Python’s Modules Documentation.

class libcst.codemod.visitors.AddImportsVisitor

Ensures that given imports exist in a module. Given a CodemodContext and a sequence of tuples specifying
a module to import from as a string. Optionally an object to import from that module and any alias to assign

14.5. Library of Transforms 129

https://docs.python.org/3/tutorial/modules.html

LibCST Documentation

that import, ensures that import exists. It will modify existing imports as necessary if the module in question is
already being imported from.

This is one of the transforms that is available automatically to you when running a codemod. To use it in this
manner, import AddImportsVisitor and then call the static add_needed_import() method, giving it the
current context (found as self.context for all subclasses of Codemod), the module you wish to import from
and optionally an object you wish to import from that module and any alias you would like to assign that import
to.

For example:

AddImportsVisitor.add_needed_import(self.context, "typing", "Optional")

This will produce the following code in a module, assuming there was no typing import already:

from typing import Optional

As another example:

AddImportsVisitor.add_needed_import(self.context, "typing")

This will produce the following code in a module, assuming there was no import already:

import typing

Note that this is a subclass of CSTTransformer so it is possible to instantiate it and pass it to a Module visit()
method. However, it is far easier to use the automatic transform feature of CodemodCommand and schedule an
import to be added by calling add_needed_import()

static add_needed_import(context: CodemodContext, module: str, obj: str | None = None, asname: str |
None = None, relative: int = 0)→ None

Schedule an import to be added in a future invocation of this class by updating the context to include the
module and optionally obj to be imported as well as optionally alias to alias the imported module or obj
to. When subclassing from CodemodCommand , this will be performed for you after your transform finishes
executing. If you are subclassing from a Codemod instead, you will need to call the transform_module()
method on the module under modification with an instance of this class after performing your transform.
Note that if the particular module or obj you are requesting to import already exists as an import on the
current module at the time of executing transform_module() on an instance of AddImportsVisitor,
this will perform no action in order to avoid adding duplicate imports.

class libcst.codemod.visitors.RemoveImportsVisitor

Attempt to remove given imports from a module, dependent on whether there are any uses of the imported objects.
Given a CodemodContext and a sequence of tuples specifying a module to remove as a string. Optionally an
object being imported from that module and optionally an alias assigned to that imported object, ensures that
that import no longer exists as long as there are no remaining references.

Note that static analysis is able to determine safely whether an import is still needed given a particular module,
but it is currently unable to determine whether an imported object is re-exported and used inside another module
unless that object appears in an __any__ list.

This is one of the transforms that is available automatically to you when running a codemod. To use it in this
manner, import RemoveImportsVisitor and then call the static remove_unused_import() method, giving
it the current context (found as self.context for all subclasses of Codemod), the module you wish to remove
and optionally an object you wish to stop importing as well as an alias that the object is currently assigned to.

For example:

130 Chapter 14. Codemods

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

RemoveImportsVisitor.remove_unused_import(self.context, "typing", "Optional")

This will remove any from typing import Optional that exists in the module as long as there are no uses
of Optional in that module.

As another example:

RemoveImportsVisitor.remove_unused_import(self.context, "typing")

This will remove any import typing that exists in the module, as long as there are no references to typing in
that module, including references such as typing.Optional.

Additionally, RemoveImportsVisitor includes a convenience function
remove_unused_import_by_node() which will attempt to schedule removal of all imports referenced
in that node and its children. This is especially useful inside transforms when you are going to remove a node
using RemoveFromParent() to get rid of a node.

For example:

def leave_AnnAssign(
self, original_node: cst.AnnAssign, updated_node: cst.AnnAssign,

) -> cst.RemovalSentinel:
Remove all annotated assignment statements, clean up imports.
RemoveImportsVisitor.remove_unused_import_by_node(self.context, original_node)
return cst.RemovalFromParent()

This will remove all annotated assignment statements from a module as well as clean up any imports that were
only referenced in those assignments. Note that we pass the original_node to the helper function as it uses
scope analysis under the hood which is only computed on the original tree.

Note that this is a subclass of CSTTransformer so it is possible to instantiate it and pass it to a Module visit()
method. However, it is far easier to use the automatic transform feature of CodemodCommand and schedule an
import to be added by calling remove_unused_import()

METADATA_DEPENDENCIES: Tuple[Type[BaseMetadataProvider[object]]] = (<class
'libcst.metadata.name_provider.QualifiedNameProvider'>, <class
'libcst.metadata.scope_provider.ScopeProvider'>)

The set of metadata dependencies declared by this class.

static remove_unused_import(context: CodemodContext, module: str, obj: str | None = None, asname:
str | None = None)→ None

Schedule an import to be removed in a future invocation of this class by updating the context to include
the module and optionally obj which is currently imported as well as optionally alias that the imported
module or obj is aliased to. When subclassing from CodemodCommand , this will be performed for you
after your transform finishes executing. If you are subclassing from a Codemod instead, you will need to
call the transform_module() method on the module under modification with an instance of this class
after performing your transform. Note that if the particular module or obj you are requesting to remove is
still in use somewhere in the current module at the time of executing transform_module() on an instance
of AddImportsVisitor, this will perform no action in order to avoid removing an in-use import.

static remove_unused_import_by_node(context: CodemodContext, node: CSTNode)→ None
Schedule any imports referenced by node or one of its children to be removed in a future invocation of this
class by updating the context to include the module, obj and alias for each import in question. When
subclassing from CodemodCommand , this will be performed for you after your transform finishes executing.
If you are subclassing from a Codemod instead, you will need to call the transform_module()method on
the module under modification with an instance of this class after performing your transform. Note that all

14.5. Library of Transforms 131

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

imports that are referenced by this node or its children will only be removed if they are not in use at the time
of exeucting transform_module() on an instance of AddImportsVisitor in order to avoid removing
an in-use import.

class libcst.codemod.visitors.ApplyTypeAnnotationsVisitor

Apply type annotations to a source module using the given stub mdules. You can also pass in explicit annotations
for functions and attributes and pass in new class definitions that need to be added to the source module.

This is one of the transforms that is available automatically to you when running a codemod. To use it in this man-
ner, import ApplyTypeAnnotationsVisitor and then call the static store_stub_in_context() method,
giving it the current context (found as self.context for all subclasses of Codemod), the stub module from
which you wish to add annotations.

For example, you can store the type annotation int for x using:

stub_module = parse_module("x: int = ...")

ApplyTypeAnnotationsVisitor.store_stub_in_context(self.context, stub_module)

You can apply the type annotation using:

source_module = parse_module("x = 1")
ApplyTypeAnnotationsVisitor.transform_module(source_module)

This will produce the following code:

x: int = 1

If the function or attribute already has a type annotation, it will not be overwritten.

To overwrite existing annotations when applying annotations from a stub, use the keyword ar-
gument overwrite_existing_annotations=True when constructing the codemod or when calling
store_stub_in_context.

static store_stub_in_context(context: CodemodContext, stub: Module,
overwrite_existing_annotations: bool = False, use_future_annotations:
bool = False, strict_posargs_matching: bool = True,
strict_annotation_matching: bool = False, always_qualify_annotations:
bool = False)→ None

Store a stub module in the CodemodContext so that type annotations from the stub can be applied in a
later invocation of this class.

If the overwrite_existing_annotations flag is True, the codemod will overwrite any existing anno-
tations.

If you call this function multiple times, only the last values of stub and
overwrite_existing_annotations will take effect.

transform_module_impl(tree: Module)→ Module
Collect type annotations from all stubs and apply them to tree.

Gather existing imports from tree so that we don’t add duplicate imports.

Gather global names from tree so forward references are quoted.

class libcst.codemod.visitors.GatherUnusedImportsVisitor

Collects all imports from a module not directly used in the same module. Intended to be instantiated and passed
to a libcst.Module visit() method to process the full module.

Note that imports that are only used indirectly (from other modules) are still collected.

132 Chapter 14. Codemods

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

LibCST Documentation

After visiting a module the attribute unused_importswill contain a set of unused ImportAlias objects, paired
with their parent import node.

METADATA_DEPENDENCIES: Tuple[Type[BaseMetadataProvider[object]]] = (<class
'libcst.metadata.name_provider.QualifiedNameProvider'>, <class
'libcst.metadata.scope_provider.ScopeProvider'>)

The set of metadata dependencies declared by this class.

unused_imports: Set[Tuple[cst.ImportAlias, cst.Import | cst.ImportFrom]]

Contains a set of (alias, parent_import) pairs that are not used in the module after visiting.

filter_unused_imports(candidates: Iterable[Tuple[ImportAlias, Import | ImportFrom]])→
Set[Tuple[ImportAlias, Import | ImportFrom]]

Return the imports in candidates which are not used.

This function implements the main logic of this visitor, and is called after traversal. It calls is_in_use()
on each import.

Override this in a subclass for additional filtering.

is_in_use(scope: Scope, alias: ImportAlias)→ bool
Check if alias is in use in the given scope.

An alias is in use if it’s directly referenced, exported, or appears in a string type annotation. Override this
in a subclass for additional filtering.

class libcst.codemod.visitors.GatherCommentsVisitor

Collects all comments matching a certain regex and their line numbers. This visitor is useful for capturing
special-purpose comments, for example noqa style lint suppression annotations.

Standalone comments are assumed to affect the line following them, and inline ones are recorded with the line
they are on.

After visiting a CST, matching comments are collected in the comments attribute.

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.position_provider.PositionProvider'>,)

The set of metadata dependencies declared by this class.

comments: Dict[int, cst.Comment]

Dictionary of comments found in the CST. Keys are line numbers, values are comment nodes.

class libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor

Collects all names from string literals used for typing purposes. This includes annotations like foo: "SomeType
", and parameters to special functions related to typing (currently only typing.TypeVar).

After visiting, a set of all found names will be available on the names attribute of this visitor.

METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class
'libcst.metadata.name_provider.QualifiedNameProvider'>,)

The set of metadata dependencies declared by this class.

names: Set[str]

The set of names collected from string literals.

14.5. Library of Transforms 133

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

134 Chapter 14. Codemods

CHAPTER

FIFTEEN

HELPERS

Helpers are higher level functions built for reducing recurring code boilerplate. We add helpers as method of CSTNode
or libcst.helpers package based on those principles:

• CSTNode method: simple, read-only and only require data of the direct children of a CSTNode.

• libcst.helpers: node transforms or require recursively traversing the syntax tree.

15.1 Construction Helpers

Functions that assist in creating a new LibCST tree.

libcst.helpers.parse_template_module(template: str, config: PartialParserConfig = PartialParserConfig(),
**template_replacements: BaseExpression | Annotation |
AssignTarget | Param | Parameters | Arg | BaseStatement |
BaseSmallStatement | BaseSuite | BaseSlice | SubscriptElement |
Decorator)→ Module

Accepts an entire python module template, including all leading and trailing whitespace. Any CSTNode provided
as a keyword argument to this function will be inserted into the template at the appropriate location similar to an
f-string expansion. For example:

module = parse_template_module("from {mod} import Foo\n", mod=Name("bar"))

The above code will parse to a module containing a single FromImport statement, referencing module bar and
importing object Foo from it. Remember that if you are parsing a template as part of a substitution inside a
transform, its considered best practice to pass in a config from the current module under transformation.

Note that unlike parse_module(), this function does not support bytes as an input. This is due to the fact that
it is processed as a template before parsing as a module.

libcst.helpers.parse_template_expression(template: str, config: PartialParserConfig =
PartialParserConfig(), **template_replacements:
BaseExpression | Annotation | AssignTarget | Param |
Parameters | Arg | BaseStatement | BaseSmallStatement |
BaseSuite | BaseSlice | SubscriptElement | Decorator)→
BaseExpression

Accepts an expression template on a single line. Leading and trailing whitespace is not valid (there’s nowhere to
store it on the expression node). Any CSTNode provided as a keyword argument to this function will be inserted
into the template at the appropriate location similar to an f-string expansion. For example:

expression = parse_template_expression("x + {foo}", foo=Name("y")))

135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

LibCST Documentation

The above code will parse to a BinaryOperation expression adding two names (x and y) together.

Remember that if you are parsing a template as part of a substitution inside a transform, its considered best
practice to pass in a config from the current module under transformation.

libcst.helpers.parse_template_statement(template: str, config: PartialParserConfig =
PartialParserConfig(), **template_replacements:
BaseExpression | Annotation | AssignTarget | Param |
Parameters | Arg | BaseStatement | BaseSmallStatement |
BaseSuite | BaseSlice | SubscriptElement | Decorator)→
SimpleStatementLine | BaseCompoundStatement

Accepts a statement template followed by a trailing newline. If a trailing newline is not provided, one will be
added. Any CSTNode provided as a keyword argument to this function will be inserted into the template at the
appropriate location similar to an f-string expansion. For example:

statement = parse_template_statement("assert x > 0, {msg}", msg=SimpleString('"Uh␣
→˓oh!"'))

The above code will parse to an assert statement checking that some variable x is greater than zero, or providing
the assert message "Uh oh!".

Remember that if you are parsing a template as part of a substitution inside a transform, its considered best
practice to pass in a config from the current module under transformation.

15.2 Transformation Helpers

Functions that assist in transforming an existing LibCST node.

libcst.helpers.insert_header_comments(node: Module, comments: List[str])→ Module
Insert comments after last non-empty line in header. Use this to insert one or more comments after any copyright
preamble in a Module. Each comment in the list of comments must start with a # and will be placed on its own
line in the appropriate location.

15.3 Traversing Helpers

Functions that assist in traversing an existing LibCST tree.

libcst.helpers.get_full_name_for_node(node: str | CSTNode)→ str | None
Return a dot concatenated full name for str, Name, Attribute. Call, Subscript, FunctionDef , ClassDef ,
Decorator. Return None for not supported Node.

libcst.helpers.get_full_name_for_node_or_raise(node: str | CSTNode)→ str
Return a dot concatenated full name for str, Name, Attribute. Call, Subscript, FunctionDef , ClassDef .
Raise Exception for not supported Node.

libcst.helpers.ensure_type(node: object, nodetype: Type[T])→ T
Takes any python object, and a LibCST CSTNode subclass and refines the type of the python object. This is most
useful when you already know that a particular object is a certain type but your type checker is not convinced.
Note that this does an instance check for you and raises an exception if it is not the right type, so this should be
used in situations where you are sure of the type given previous checks.

136 Chapter 15. Helpers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type

CHAPTER

SIXTEEN

EXPERIMENTAL APIS

These APIs may change at any time (including in minor releases) with no notice. You probably shouldn’t use them,
but if you do, you should pin your application to an exact release of LibCST to avoid breakages.

16.1 Reentrant Code Generation

class libcst.metadata.ExperimentalReentrantCodegenProvider

An experimental API that allows fast generation of modified code by recording an initial code-generation pass,
and incrementally applying updates. It is a performance optimization for a few niche use-cases and is not user-
friendly.

This API may change at any time without warning (including in minor releases).

This is rarely useful. Instead you should make multiple modifications to a single syntax tree, and generate the
code once. However, we can think of a few use-cases for this API (hence, why it exists):

• When linting a file, you might generate multiple independent patches that a user can accept or reject. De-
pending on your architecture, it may be advantageous to avoid regenerating the file when computing each
patch.

• You might want to call out to an external utility (e.g. a typechecker, such as pyre or mypy) to validate a
small change. You may need to generate and test lots of these patches.

Restrictions:

• For safety and sanity reasons, the smallest/only level of granularity is a statement. If you need to patch part
of a statement, you regenerate the entire statement. If you need to regenerate an entire module, just call
libcst.Module.code().

• This does not (currently) operate recursively. You can patch an unpatched piece of code multiple times, but
you can’t layer additional patches on an already patched piece of code.

class libcst.metadata.CodegenPartial

Provided by ExperimentalReentrantCodegenProvider.

Stores enough information to generate either a small patch (get_modified_code_range()) or a new file
(get_modified_code()) by replacing the old node at this position.

start_offset: int

end_offset: int

has_trailing_newline: bool

137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

LibCST Documentation

get_original_module_code()→ str
Equivalent to libcst.Module.bytes() on the top-level module that contains this statement, except that
it uses the cached result from our previous code generation pass, so it’s faster.

get_original_module_bytes()→ bytes
Equivalent to libcst.Module.bytes() on the top-level module that contains this statement, except that
it uses the cached result from our previous code generation pass, so it’s faster.

get_original_statement_code()→ str
Equivalent to libcst.Module.code_for_node() on the current statement, except that it uses the cached
result from our previous code generation pass, so it’s faster.

get_modified_statement_code(node: BaseStatement)→ str
Gets the new code for node as if it were in same location as the old statement being replaced. This means
that it inherits details like the old statement’s indentation.

get_modified_module_code(node: BaseStatement)→ str
Gets the new code for the module at the root of this statement’s tree, but with the supplied replacement
node in its place.

get_modified_module_bytes(node: BaseStatement)→ bytes
Gets the new bytes for the module at the root of this statement’s tree, but with the supplied replacement
node in its place.

138 Chapter 16. Experimental APIs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

• search

139

LibCST Documentation

140 Chapter 17. Indices and tables

CHAPTER

EIGHTEEN

PRIVACY POLICY AND TERMS OF USE

• Privacy Policy

• Terms of Use

141

https://opensource.facebook.com/legal/privacy
https://opensource.facebook.com/legal/terms

LibCST Documentation

142 Chapter 18. Privacy Policy and Terms of Use

INDEX

Symbols
__contains__() (libcst.metadata.Accesses method),

102
__contains__() (libcst.metadata.Assignments method),

102
__contains__() (libcst.metadata.Scope method), 100
__getitem__() (libcst.metadata.Accesses method), 102
__getitem__() (libcst.metadata.Assignments method),

102
__getitem__() (libcst.metadata.Scope method), 100
__init__() (libcst.metadata.FullRepoManager

method), 105
__init__() (libcst.metadata.MetadataWrapper

method), 93
__iter__() (libcst.metadata.Accesses method), 102
__iter__() (libcst.metadata.Assignments method), 101
__str__() (libcst.ParserSyntaxError method), 39

A
Access (class in libcst.metadata), 99
Accesses (class in libcst.metadata), 102
accesses (libcst.metadata.Scope property), 101
add_args() (libcst.codemod.CodemodCommand static

method), 126
add_needed_import()

(libcst.codemod.visitors.AddImportsVisitor
static method), 130

addClassCleanup() (libcst.codemod.CodemodTest
class method), 123

AddImportsVisitor (class in libcst.codemod.visitors),
129

AllOf (class in libcst.matchers), 113
AnnAssign (class in libcst), 64
Annotation (class in libcst), 72
annotation (libcst.AnnAssign attribute), 64
annotation (libcst.Annotation attribute), 72
annotation (libcst.Param attribute), 75
ApplyTypeAnnotationsVisitor (class in

libcst.codemod.visitors), 132
Arg (class in libcst), 49
args (libcst.Call attribute), 49
AsName (class in libcst), 72

asname (libcst.ImportAlias attribute), 74
asname (libcst.WithItem attribute), 76
Assert (class in libcst), 64
assertCodeEqual() (libcst.codemod.CodemodTest

method), 123
assertCodemod() (libcst.codemod.CodemodTest

method), 123
assertNoLogs() (libcst.codemod.CodemodTest

method), 123
Assign (class in libcst), 64
AssignEqual (class in libcst), 81
Assignment (class in libcst.metadata), 99
Assignments (class in libcst.metadata), 101
assignments (libcst.metadata.Scope property), 101
AssignTarget (class in libcst), 72
Asynchronous (class in libcst), 47
asynchronous (libcst.CompFor attribute), 61
asynchronous (libcst.For attribute), 69
asynchronous (libcst.FunctionDef attribute), 70
asynchronous (libcst.With attribute), 72
AtLeastN (class in libcst.matchers), 117
AtMostN (class in libcst.matchers), 118
attr (libcst.Attribute attribute), 44
Attribute (class in libcst), 44
AugAssign (class in libcst), 65
Await (class in libcst), 47

B
BaseAssignment (class in libcst.metadata), 99
BaseAssignTargetExpression (class in libcst), 73
BaseComp (class in libcst), 58
BaseCompoundStatement (class in libcst), 68
BaseDelTargetExpression (class in libcst), 73
BaseDict (class in libcst), 57
BaseDictElement (class in libcst), 57
BaseElement (class in libcst), 56
BaseExpression (class in libcst), 44
BaseFormattedStringContent (class in libcst), 53
BaseList (class in libcst), 54
BaseMatcherNode (class in libcst.matchers), 113
BaseMetadataProvider (class in libcst), 95
BaseNumber (class in libcst), 50

143

LibCST Documentation

BaseParenthesizableWhitespace (class in libcst), 84
bases (libcst.ClassDef attribute), 68
BaseSet (class in libcst), 55
BaseSimpleComp (class in libcst), 58
BaseSlice (class in libcst), 62
BaseSmallStatement (class in libcst), 64
BaseString (class in libcst), 51
BaseSuite (class in libcst), 76
BatchableCSTVisitor (class in libcst), 91
BatchableMetadataProvider (class in

libcst.metadata), 95
BinaryOperation (class in libcst), 45
BLACKLISTED (libcst.codemod.SkipReason attribute),

125
body (libcst.BaseCompoundStatement attribute), 68
body (libcst.BaseSuite attribute), 76
body (libcst.ClassDef attribute), 68
body (libcst.Else attribute), 73
body (libcst.ExceptHandler attribute), 74
body (libcst.Finally attribute), 74
body (libcst.For attribute), 69
body (libcst.FunctionDef attribute), 69
body (libcst.If attribute), 70
body (libcst.IfExp attribute), 48
body (libcst.IndentedBlock attribute), 77
body (libcst.Lambda attribute), 48
body (libcst.Module attribute), 43
body (libcst.SimpleStatementLine attribute), 77
body (libcst.SimpleStatementSuite attribute), 77
body (libcst.Try attribute), 71
body (libcst.While attribute), 71
body (libcst.With attribute), 71
BooleanOperation (class in libcst), 45
Break (class in libcst), 65
BUILTIN (libcst.metadata.QualifiedNameSource at-

tribute), 102
BuiltinAssignment (class in libcst.metadata), 99
BuiltinScope (class in libcst.metadata), 101
bytes (libcst.Module property), 43
ByteSpanPositionProvider (class in libcst.metadata),

96

C
cache (libcst.metadata.FullRepoManager property), 105
Call (class in libcst), 49
call_if_inside() (in module libcst.matchers), 109
call_if_not_inside() (in module libcst.matchers),

109
cause (libcst.Raise attribute), 67
children (libcst.CSTNode property), 41
ClassDef (class in libcst), 68
ClassScope (class in libcst.metadata), 101
code (libcst.codemod.TransformSuccess attribute), 124
code (libcst.Module property), 43

code_for_node() (libcst.Module method), 43
CodegenPartial (class in libcst.metadata), 137
Codemod (class in libcst.codemod), 121
CodemodCommand (class in libcst.codemod), 126
CodemodContext (class in libcst.codemod), 121
CodemodTest (class in libcst.codemod), 123
CodePosition (class in libcst.metadata), 96
CodeRange (class in libcst.metadata), 96
CodeSpan (class in libcst.metadata), 96
Colon (class in libcst), 81
colon (libcst.Lambda attribute), 48
column (libcst.metadata.CodePosition attribute), 96
Comma (class in libcst), 81
comma (libcst.Arg attribute), 49
comma (libcst.Assert attribute), 64
comma (libcst.DictElement attribute), 57
comma (libcst.Element attribute), 56
comma (libcst.ImportAlias attribute), 74
comma (libcst.NameItem attribute), 75
comma (libcst.Param attribute), 75
comma (libcst.ParamSlash attribute), 76
comma (libcst.ParamStar attribute), 76
comma (libcst.StarredDictElement attribute), 58
comma (libcst.StarredElement attribute), 56
comma (libcst.SubscriptElement attribute), 62
comma (libcst.WithItem attribute), 76
Comment (class in libcst), 82
comment (libcst.EmptyLine attribute), 83
comment (libcst.TrailingWhitespace attribute), 84
comments (libcst.codemod.visitors.GatherCommentsVisitor

attribute), 133
comparator (libcst.ComparisonTarget attribute), 46
Comparison (class in libcst), 46
comparisons (libcst.Comparison attribute), 46
ComparisonTarget (class in libcst), 46
CompFor (class in libcst), 60
CompIf (class in libcst), 61
ComprehensionScope (class in libcst.metadata), 101
ConcatenatedString (class in libcst), 51
config_for_parsing (libcst.Module property), 43
context (libcst.ParserSyntaxError property), 39
ContextAwareTransformer (class in libcst.codemod),

122
ContextAwareVisitor (class in libcst.codemod), 122
Continue (class in libcst), 65
conversion (libcst.FormattedStringExpression at-

tribute), 53
CSTNode (class in libcst), 41
CSTTransformer (class in libcst), 87
CSTVisitor (class in libcst), 87

D
Decorator (class in libcst), 73
decorator (libcst.Decorator attribute), 73

144 Index

LibCST Documentation

decorators (libcst.ClassDef attribute), 68
decorators (libcst.FunctionDef attribute), 70
deep_clone() (libcst.CSTNode method), 42
deep_equals() (libcst.CSTNode method), 42
deep_remove() (libcst.CSTNode method), 42
deep_replace() (libcst.CSTNode method), 42
DEFAULT (libcst.MaybeSentinel attribute), 85
default (libcst.Param attribute), 75
default_indent (libcst.Module attribute), 43
default_indent (libcst.PartialParserConfig attribute),

38
default_newline (libcst.Module attribute), 43
default_newline (libcst.PartialParserConfig at-

tribute), 38
Del (class in libcst), 65
DEL (libcst.metadata.ExpressionContext attribute), 97
DESCRIPTION (libcst.codemod.CodemodCommand at-

tribute), 126
Dict (class in libcst), 57
DictComp (class in libcst), 59
DictElement (class in libcst), 57
diff_code() (in module libcst.codemod), 128
doClassCleanups() (libcst.codemod.CodemodTest

class method), 124
DoesNotMatch() (in module libcst.matchers), 114
DoNotCare() (in module libcst.matchers), 117
Dot (class in libcst), 82
dot (libcst.Attribute attribute), 44

E
editor_column (libcst.ParserSyntaxError property), 39
editor_line (libcst.ParserSyntaxError property), 39
Element (class in libcst), 56
elements (libcst.Dict attribute), 57
elements (libcst.List attribute), 55
elements (libcst.Set attribute), 55
elements (libcst.Tuple attribute), 54
Ellipsis (class in libcst), 50
Else (class in libcst), 73
elt (libcst.BaseSimpleComp attribute), 58
elt (libcst.GeneratorExp attribute), 58
elt (libcst.ListComp attribute), 59
elt (libcst.SetComp attribute), 59
empty (libcst.BaseParenthesizableWhitespace property),

84
empty (libcst.ParenthesizedWhitespace property), 83
empty (libcst.SimpleWhitespace property), 84
empty_lines (libcst.ParenthesizedWhitespace at-

tribute), 83
EmptyLine (class in libcst), 82
encoding (libcst.Module attribute), 43
encoding (libcst.PartialParserConfig attribute), 38
end (libcst.FormattedString attribute), 53
end (libcst.metadata.CodeRange attribute), 96

end_offset (libcst.metadata.CodegenPartial attribute),
137

ensure_type() (in module libcst.helpers), 136
enterClassContext() (libcst.codemod.CodemodTest

class method), 124
enterContext() (libcst.codemod.CodemodTest

method), 124
equal (libcst.AnnAssign attribute), 64
equal (libcst.Arg attribute), 49
equal (libcst.FormattedStringExpression attribute), 53
equal (libcst.Param attribute), 75
error (libcst.codemod.TransformFailure attribute), 125
evaluated_alias (libcst.ImportAlias property), 74
evaluated_name (libcst.ImportAlias property), 74
evaluated_value (libcst.ConcatenatedString property),

52
evaluated_value (libcst.Float property), 50
evaluated_value (libcst.Imaginary property), 50
evaluated_value (libcst.Integer property), 50
evaluated_value (libcst.SimpleString property), 51
exc (libcst.Raise attribute), 67
ExceptHandler (class in libcst), 74
exec_transform_with_prettyprint() (in module

libcst.codemod), 127
ExperimentalReentrantCodegenProvider (class in

libcst.metadata), 137
Expr (class in libcst), 65
expression (libcst.Await attribute), 47
expression (libcst.FormattedStringExpression at-

tribute), 53
expression (libcst.UnaryOperation attribute), 45
ExpressionContext (class in libcst.metadata), 97
ExpressionContextProvider (class in

libcst.metadata), 97
extract() (in module libcst.matchers), 108
extract() (libcst.matchers.MatcherDecoratableTransformer

method), 111
extract() (libcst.matchers.MatcherDecoratableVisitor

method), 110
extractall() (in module libcst.matchers), 108
extractall() (libcst.matchers.MatcherDecoratableTransformer

method), 112
extractall() (libcst.matchers.MatcherDecoratableVisitor

method), 110

F
failures (libcst.codemod.ParallelTransformResult at-

tribute), 128
field() (libcst.CSTNode class method), 42
filename (libcst.codemod.CodemodContext attribute),

122
FilePathProvider (class in libcst.metadata), 104
filter_unused_imports()

(libcst.codemod.visitors.GatherUnusedImportsVisitor

Index 145

LibCST Documentation

method), 133
finalbody (libcst.Try attribute), 71
Finally (class in libcst), 74
findall() (in module libcst.matchers), 107
findall() (libcst.matchers.MatcherDecoratableTransformer

method), 111
findall() (libcst.matchers.MatcherDecoratableVisitor

method), 110
first_colon (libcst.Slice attribute), 62
first_line (libcst.ParenthesizedWhitespace attribute),

83
FlattenSentinel (class in libcst), 88
Float (class in libcst), 50
footer (libcst.IndentedBlock attribute), 77
footer (libcst.Module attribute), 43
For (class in libcst), 69
for_in (libcst.BaseComp attribute), 58
for_in (libcst.BaseSimpleComp attribute), 58
for_in (libcst.DictComp attribute), 59
for_in (libcst.GeneratorExp attribute), 58
for_in (libcst.ListComp attribute), 59
for_in (libcst.SetComp attribute), 59
format_spec (libcst.FormattedStringExpression at-

tribute), 53
FormattedString (class in libcst), 52
FormattedStringExpression (class in libcst), 53
FormattedStringText (class in libcst), 53
From (class in libcst), 47
full_module_name (libcst.codemod.CodemodContext

attribute), 122
full_package_name (libcst.codemod.CodemodContext

attribute), 122
FullRepoManager (class in libcst.metadata), 105
FullyQualifiedNameProvider (class in

libcst.metadata), 103
func (libcst.Call attribute), 49
func (libcst.matchers.MatchIfTrue property), 115
func (libcst.matchers.MatchMetadataIfTrue property),

116
FunctionDef (class in libcst), 69
FunctionScope (class in libcst.metadata), 101
future_imports (libcst.PartialParserConfig attribute),

38

G
gather_files() (in module libcst.codemod), 127
GatherCommentsVisitor (class in

libcst.codemod.visitors), 133
GatherExportsVisitor (class in

libcst.codemod.visitors), 129
GatherImportsVisitor (class in

libcst.codemod.visitors), 129
GatherNamesFromStringAnnotationsVisitor (class

in libcst.codemod.visitors), 133

GatherUnusedImportsVisitor (class in
libcst.codemod.visitors), 132

gen_cache (libcst.BaseMetadataProvider attribute), 95
gen_cache() (libcst.metadata.FilePathProvider class

method), 104
gen_cache() (libcst.metadata.FullyQualifiedNameProvider

class method), 103
gen_cache() (libcst.metadata.TypeInferenceProvider

static method), 105
GENERATED (libcst.codemod.SkipReason attribute), 125
GeneratorExp (class in libcst), 58
get_cache_for_path()

(libcst.metadata.FullRepoManager method),
105

get_docstring() (libcst.ClassDef method), 69
get_docstring() (libcst.FunctionDef method), 70
get_docstring() (libcst.Module method), 44
get_full_name_for_node() (in module

libcst.helpers), 136
get_full_name_for_node_or_raise() (in module

libcst.helpers), 136
get_inherited_dependencies()

(libcst.MetadataDependent class method),
94

get_metadata() (libcst.BaseMetadataProvider
method), 95

get_metadata() (libcst.MetadataDependent method),
94

get_metadata_wrapper_for_path()
(libcst.metadata.FullRepoManager method),
105

get_modified_module_bytes()
(libcst.metadata.CodegenPartial method),
138

get_modified_module_code()
(libcst.metadata.CodegenPartial method),
138

get_modified_statement_code()
(libcst.metadata.CodegenPartial method),
138

get_original_module_bytes()
(libcst.metadata.CodegenPartial method),
138

get_original_module_code()
(libcst.metadata.CodegenPartial method),
137

get_original_statement_code()
(libcst.metadata.CodegenPartial method),
138

get_qualified_names_for()
(libcst.metadata.Assignment method), 99

get_qualified_names_for()
(libcst.metadata.BuiltinAssignment method),
100

146 Index

LibCST Documentation

get_qualified_names_for() (libcst.metadata.Scope
method), 101

get_transforms() (libcst.codemod.MagicArgsCodemodCommand
method), 127

get_visitors() (libcst.BatchableCSTVisitor method),
91

Global (class in libcst), 66
globals (libcst.metadata.Scope attribute), 100
GlobalScope (class in libcst.metadata), 101

H
handlers (libcst.Try attribute), 71
has_name() (libcst.metadata.QualifiedNameProvider

static method), 103
has_trailing_newline

(libcst.metadata.CodegenPartial attribute),
137

has_trailing_newline (libcst.Module attribute), 43
header (libcst.IndentedBlock attribute), 77
header (libcst.Module attribute), 43

I
If (class in libcst), 70
IfExp (class in libcst), 47
ifs (libcst.CompFor attribute), 61
Imaginary (class in libcst), 50
Import (class in libcst), 66
IMPORT (libcst.metadata.QualifiedNameSource attribute),

102
ImportAlias (class in libcst), 74
ImportFrom (class in libcst), 66
ImportStar (class in libcst), 82
indent (libcst.EmptyLine attribute), 82
indent (libcst.IndentedBlock attribute), 77
indent (libcst.ParenthesizedWhitespace attribute), 83
IndentedBlock (class in libcst), 77
Index (class in libcst), 62
initalized (libcst.matchers.TypeOf property), 114
inner_for_in (libcst.CompFor attribute), 61
insert_header_comments() (in module

libcst.helpers), 136
Integer (class in libcst), 50
is_annotation (libcst.metadata.Access attribute), 99
is_in_use() (libcst.codemod.visitors.GatherUnusedImportsVisitor

method), 133
is_type_hint (libcst.metadata.Access attribute), 99
item (libcst.From attribute), 47
item (libcst.WithItem attribute), 76
items (libcst.With attribute), 71
iter (libcst.CompFor attribute), 60
iter (libcst.For attribute), 69

K
key (libcst.DictComp attribute), 59

key (libcst.DictElement attribute), 57
key (libcst.matchers.MatchMetadata property), 115
key (libcst.matchers.MatchMetadataIfTrue property),

116
keyword (libcst.Arg attribute), 49
keywords (libcst.ClassDef attribute), 68
kwonly_params (libcst.Parameters attribute), 75

L
Lambda (class in libcst), 48
last_line (libcst.ParenthesizedWhitespace attribute),

83
lbrace (libcst.Dict attribute), 57
lbrace (libcst.DictComp attribute), 59
lbrace (libcst.Set attribute), 55
lbrace (libcst.SetComp attribute), 59
lbracket (libcst.BaseList attribute), 54
lbracket (libcst.List attribute), 55
lbracket (libcst.ListComp attribute), 59
lbracket (libcst.Subscript attribute), 61
leading_lines (libcst.BaseCompoundStatement at-

tribute), 68
leading_lines (libcst.ClassDef attribute), 68
leading_lines (libcst.Decorator attribute), 73
leading_lines (libcst.Else attribute), 73
leading_lines (libcst.ExceptHandler attribute), 74
leading_lines (libcst.Finally attribute), 74
leading_lines (libcst.For attribute), 69
leading_lines (libcst.FunctionDef attribute), 70
leading_lines (libcst.If attribute), 70
leading_lines (libcst.SimpleStatementLine attribute),

77
leading_lines (libcst.Try attribute), 71
leading_lines (libcst.While attribute), 71
leading_lines (libcst.With attribute), 72
leading_whitespace (libcst.SimpleStatementSuite at-

tribute), 77
leave() (in module libcst.matchers), 109
left (libcst.BinaryOperation attribute), 45
left (libcst.BooleanOperation attribute), 46
left (libcst.Comparison attribute), 46
left (libcst.ConcatenatedString attribute), 51
LeftCurlyBrace (class in libcst), 63
LeftParen (class in libcst), 63
LeftSquareBracket (class in libcst), 63
length (libcst.metadata.CodeSpan attribute), 96
LessThanEqual (class in libcst), 79
libcst.Add (built-in class), 79
libcst.AddAssign (built-in class), 80
libcst.And (built-in class), 78
libcst.BaseAugOp (built-in class), 81
libcst.BaseBinaryOp (built-in class), 79
libcst.BaseBooleanOp (built-in class), 78
libcst.BaseCompOp (built-in class), 80

Index 147

LibCST Documentation

libcst.BaseUnaryOp (built-in class), 78
libcst.BitAnd (built-in class), 79
libcst.BitAndAssign (built-in class), 80
libcst.BitInvert (built-in class), 78
libcst.BitOr (built-in class), 79
libcst.BitOrAssign (built-in class), 80
libcst.BitXor (built-in class), 79
libcst.BitXorAssign (built-in class), 80
libcst.Divide (built-in class), 79
libcst.DivideAssign (built-in class), 80
libcst.Equal (built-in class), 79
libcst.FloorDivide (built-in class), 79
libcst.FloorDivideAssign (built-in class), 80
libcst.GreaterThan (built-in class), 79
libcst.GreaterThanEqual (built-in class), 79
libcst.In (built-in class), 79
libcst.Is (built-in class), 79
libcst.IsNot (built-in class), 80
libcst.LeftShift (built-in class), 79
libcst.LeftShiftAssign (built-in class), 80
libcst.LessThan (built-in class), 79
libcst.MatrixMultiply (built-in class), 79
libcst.MatrixMultiplyAssign (built-in class), 81
libcst.Minus (built-in class), 78
libcst.Modulo (built-in class), 79
libcst.ModuloAssign (built-in class), 81
libcst.Multiply (built-in class), 79
libcst.MultiplyAssign (built-in class), 81
libcst.Not (built-in class), 78
libcst.Power (built-in class), 79
libcst.PowerAssign (built-in class), 81
libcst.RightShift (built-in class), 79
libcst.RightShiftAssign (built-in class), 81
line (libcst.metadata.CodePosition attribute), 96
lines_after_decorators (libcst.ClassDef attribute),

68
lines_after_decorators (libcst.FunctionDef at-

tribute), 70
List (class in libcst), 54
ListComp (class in libcst), 58
LOAD (libcst.metadata.ExpressionContext attribute), 97
LOCAL (libcst.metadata.QualifiedNameSource attribute),

102
lower (libcst.Slice attribute), 62
lpar (libcst.Attribute attribute), 45
lpar (libcst.Await attribute), 47
lpar (libcst.BaseList attribute), 54
lpar (libcst.BinaryOperation attribute), 45
lpar (libcst.BooleanOperation attribute), 46
lpar (libcst.Call attribute), 49
lpar (libcst.ClassDef attribute), 68
lpar (libcst.Comparison attribute), 46
lpar (libcst.ConcatenatedString attribute), 51
lpar (libcst.Dict attribute), 57

lpar (libcst.DictComp attribute), 60
lpar (libcst.Ellipsis attribute), 50
lpar (libcst.Float attribute), 50
lpar (libcst.FormattedString attribute), 53
lpar (libcst.GeneratorExp attribute), 58
lpar (libcst.IfExp attribute), 48
lpar (libcst.Imaginary attribute), 50
lpar (libcst.ImportFrom attribute), 66
lpar (libcst.Integer attribute), 50
lpar (libcst.Lambda attribute), 48
lpar (libcst.List attribute), 55
lpar (libcst.ListComp attribute), 59
lpar (libcst.Name attribute), 44
lpar (libcst.Set attribute), 55
lpar (libcst.SetComp attribute), 59
lpar (libcst.SimpleString attribute), 51
lpar (libcst.StarredElement attribute), 56
lpar (libcst.Subscript attribute), 62
lpar (libcst.Tuple attribute), 54
lpar (libcst.UnaryOperation attribute), 45
lpar (libcst.With attribute), 72
lpar (libcst.Yield attribute), 47

M
MagicArgsCodemodCommand (class in libcst.codemod),

126
make_fixture_data() (libcst.codemod.CodemodTest

static method), 124
matcher (libcst.matchers.AtLeastN property), 118
matcher (libcst.matchers.AtMostN property), 119
MatcherDecoratableTransformer (class in

libcst.matchers), 111
MatcherDecoratableVisitor (class in

libcst.matchers), 110
matches() (in module libcst.matchers), 107
matches() (libcst.matchers.MatcherDecoratableTransformer

method), 111
matches() (libcst.matchers.MatcherDecoratableVisitor

method), 110
MatchIfTrue (class in libcst.matchers), 114
MatchMetadata (class in libcst.matchers), 115
MatchMetadataIfTrue (class in libcst.matchers), 116
MatchRegex() (in module libcst.matchers), 115
MaybeSentinel (class in libcst), 84
message (libcst.ParserSyntaxError attribute), 39
metadata (libcst.MetadataDependent attribute), 94
METADATA_DEPENDENCIES

(libcst.codemod.visitors.GatherCommentsVisitor
attribute), 133

METADATA_DEPENDENCIES
(libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor
attribute), 133

METADATA_DEPENDENCIES
(libcst.codemod.visitors.GatherUnusedImportsVisitor

148 Index

LibCST Documentation

attribute), 133
METADATA_DEPENDENCIES

(libcst.codemod.visitors.RemoveImportsVisitor
attribute), 131

METADATA_DEPENDENCIES
(libcst.metadata.FullyQualifiedNameProvider
attribute), 103

METADATA_DEPENDENCIES
(libcst.metadata.QualifiedNameProvider
attribute), 103

METADATA_DEPENDENCIES
(libcst.metadata.ScopeProvider attribute),
98

METADATA_DEPENDENCIES
(libcst.metadata.TypeInferenceProvider at-
tribute), 104

METADATA_DEPENDENCIES (libcst.MetadataDependent
attribute), 94

metadata_manager (libcst.codemod.CodemodContext
attribute), 122

MetadataDependent (class in libcst), 94
MetadataWrapper (class in libcst.metadata), 93
Module (class in libcst), 43
module (libcst.codemod.Codemod property), 121
module (libcst.codemod.CodemodContext property), 122
module (libcst.codemod.ContextAwareVisitor property),

123
module (libcst.ImportFrom attribute), 66
module (libcst.metadata.MetadataWrapper property), 94
msg (libcst.Assert attribute), 64

N
n (libcst.matchers.AtLeastN property), 118
n (libcst.matchers.AtMostN property), 119
Name (class in libcst), 44
name (libcst.AsName attribute), 72
name (libcst.ClassDef attribute), 68
name (libcst.ExceptHandler attribute), 74
name (libcst.FunctionDef attribute), 69
name (libcst.ImportAlias attribute), 74
name (libcst.metadata.BaseAssignment attribute), 99
name (libcst.metadata.QualifiedName attribute), 102
name (libcst.NameItem attribute), 75
name (libcst.Param attribute), 75
NameItem (class in libcst), 75
names (libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor

attribute), 133
names (libcst.Global attribute), 66
names (libcst.Import attribute), 66
names (libcst.ImportFrom attribute), 66
names (libcst.Nonlocal attribute), 67
Newline (class in libcst), 83
newline (libcst.EmptyLine attribute), 83
newline (libcst.TrailingWhitespace attribute), 84

node (libcst.metadata.Access attribute), 99
node (libcst.metadata.Assignment attribute), 99
nodes (libcst.FlattenSentinel attribute), 88
Nonlocal (class in libcst), 67
NotEqual (class in libcst), 80
NotIn (class in libcst), 80

O
on_leave() (libcst.CSTTransformer method), 87
on_leave() (libcst.CSTVisitor method), 87
on_leave() (libcst.matchers.MatcherDecoratableTransformer

method), 111
on_leave() (libcst.matchers.MatcherDecoratableVisitor

method), 110
on_leave_attribute() (libcst.CSTTransformer

method), 88
on_leave_attribute() (libcst.CSTVisitor method), 87
on_leave_attribute()

(libcst.matchers.MatcherDecoratableTransformer
method), 111

on_leave_attribute()
(libcst.matchers.MatcherDecoratableVisitor
method), 110

on_visit() (libcst.CSTTransformer method), 87
on_visit() (libcst.CSTVisitor method), 87
on_visit() (libcst.matchers.MatcherDecoratableTransformer

method), 111
on_visit() (libcst.matchers.MatcherDecoratableVisitor

method), 110
on_visit_attribute() (libcst.CSTTransformer

method), 88
on_visit_attribute() (libcst.CSTVisitor method), 87
on_visit_attribute()

(libcst.matchers.MatcherDecoratableTransformer
method), 111

on_visit_attribute()
(libcst.matchers.MatcherDecoratableVisitor
method), 110

OneOf (class in libcst.matchers), 113
operator (libcst.AugAssign attribute), 65
operator (libcst.BinaryOperation attribute), 45
operator (libcst.BooleanOperation attribute), 46
operator (libcst.ComparisonTarget attribute), 46
operator (libcst.UnaryOperation attribute), 45
options (libcst.matchers.AllOf property), 114
options (libcst.matchers.OneOf property), 113
options (libcst.matchers.TypeOf property), 114
Or (class in libcst), 78
orelse (libcst.For attribute), 69
orelse (libcst.If attribute), 70
orelse (libcst.IfExp attribute), 48
orelse (libcst.Try attribute), 71
orelse (libcst.While attribute), 71
OTHER (libcst.codemod.SkipReason attribute), 125

Index 149

LibCST Documentation

P
parallel_exec_transform_with_prettyprint()

(in module libcst.codemod), 127
ParallelTransformResult (class in libcst.codemod),

128
Param (class in libcst), 75
Parameters (class in libcst), 75
params (libcst.FunctionDef attribute), 69
params (libcst.Lambda attribute), 48
params (libcst.Parameters attribute), 75
ParamSlash (class in libcst), 76
ParamStar (class in libcst), 76
parent (libcst.metadata.Scope attribute), 100
ParenthesizedWhitespace (class in libcst), 83
ParentNodeProvider (class in libcst.metadata), 104
parse_expression() (in module libcst), 37
parse_module() (in module libcst), 37
parse_statement() (in module libcst), 38
parse_template_expression() (in module

libcst.helpers), 135
parse_template_module() (in module libcst.helpers),

135
parse_template_statement() (in module

libcst.helpers), 136
parsed_python_version (libcst.PartialParserConfig

attribute), 38
ParserSyntaxError (class in libcst), 39
PartialParserConfig (class in libcst), 38
parts (libcst.FormattedString attribute), 52
Pass (class in libcst), 67
Plus (class in libcst), 78
PositionProvider (class in libcst.metadata), 96
posonly_ind (libcst.Parameters attribute), 75
posonly_params (libcst.Parameters attribute), 75
prefix (libcst.FormattedString property), 53
prefix (libcst.SimpleString property), 51
python_version (libcst.PartialParserConfig attribute),

38

Q
QualifiedName (class in libcst.metadata), 102
QualifiedNameProvider (class in libcst.metadata),

102
QualifiedNameSource (class in libcst.metadata), 102
quote (libcst.FormattedString property), 53
quote (libcst.SimpleString property), 51

R
Raise (class in libcst), 67
raw_column (libcst.ParserSyntaxError attribute), 39
raw_line (libcst.ParserSyntaxError attribute), 39
raw_value (libcst.SimpleString property), 51
rbrace (libcst.Dict attribute), 57
rbrace (libcst.DictComp attribute), 60

rbrace (libcst.Set attribute), 55
rbrace (libcst.SetComp attribute), 59
rbracket (libcst.BaseList attribute), 54
rbracket (libcst.List attribute), 55
rbracket (libcst.ListComp attribute), 59
rbracket (libcst.Subscript attribute), 62
record_assignment() (libcst.metadata.Access

method), 99
record_assignments() (libcst.metadata.Access

method), 99
references (libcst.metadata.BaseAssignment property),

99
referents (libcst.metadata.Access property), 99
relative (libcst.ImportFrom attribute), 66
RemovalSentinel (class in libcst), 88
REMOVE (libcst.RemovalSentinel attribute), 88
remove_unused_import()

(libcst.codemod.visitors.RemoveImportsVisitor
static method), 131

remove_unused_import_by_node()
(libcst.codemod.visitors.RemoveImportsVisitor
static method), 131

RemoveFromParent() (in module libcst), 88
RemoveImportsVisitor (class in

libcst.codemod.visitors), 130
replace() (in module libcst.matchers), 108
replace() (libcst.matchers.MatcherDecoratableTransformer

method), 112
replace() (libcst.matchers.MatcherDecoratableVisitor

method), 111
resolve() (libcst.metadata.MetadataWrapper method),

94
resolve() (libcst.MetadataDependent method), 94
resolve_cache() (libcst.metadata.FullRepoManager

method), 105
resolve_many() (libcst.metadata.MetadataWrapper

method), 94
Return (class in libcst), 67
returns (libcst.FunctionDef attribute), 70
right (libcst.BinaryOperation attribute), 45
right (libcst.BooleanOperation attribute), 46
right (libcst.ConcatenatedString attribute), 51
RightCurlyBrace (class in libcst), 63
RightParen (class in libcst), 63
RightSquareBracket (class in libcst), 63
rpar (libcst.Attribute attribute), 45
rpar (libcst.Await attribute), 47
rpar (libcst.BaseList attribute), 54
rpar (libcst.BinaryOperation attribute), 45
rpar (libcst.BooleanOperation attribute), 46
rpar (libcst.Call attribute), 49
rpar (libcst.ClassDef attribute), 68
rpar (libcst.Comparison attribute), 46
rpar (libcst.ConcatenatedString attribute), 51

150 Index

LibCST Documentation

rpar (libcst.Dict attribute), 57
rpar (libcst.DictComp attribute), 60
rpar (libcst.Ellipsis attribute), 50
rpar (libcst.Float attribute), 50
rpar (libcst.FormattedString attribute), 53
rpar (libcst.GeneratorExp attribute), 58
rpar (libcst.IfExp attribute), 48
rpar (libcst.Imaginary attribute), 50
rpar (libcst.ImportFrom attribute), 66
rpar (libcst.Integer attribute), 50
rpar (libcst.Lambda attribute), 48
rpar (libcst.List attribute), 55
rpar (libcst.ListComp attribute), 59
rpar (libcst.Name attribute), 44
rpar (libcst.Set attribute), 55
rpar (libcst.SetComp attribute), 59
rpar (libcst.SimpleString attribute), 51
rpar (libcst.StarredElement attribute), 56
rpar (libcst.Subscript attribute), 62
rpar (libcst.Tuple attribute), 54
rpar (libcst.UnaryOperation attribute), 45
rpar (libcst.With attribute), 72
rpar (libcst.Yield attribute), 47

S
SaveMatchedNode() (in module libcst.matchers), 116
Scope (class in libcst.metadata), 100
scope (libcst.metadata.Access attribute), 99
scope (libcst.metadata.BaseAssignment attribute), 99
ScopeProvider (class in libcst.metadata), 98
scratch (libcst.codemod.CodemodContext attribute),

122
second_colon (libcst.Slice attribute), 62
Semicolon (class in libcst), 82
semicolon (libcst.AnnAssign attribute), 64
semicolon (libcst.Assert attribute), 64
semicolon (libcst.Assign attribute), 65
semicolon (libcst.AugAssign attribute), 65
semicolon (libcst.BaseSmallStatement attribute), 64
semicolon (libcst.Break attribute), 65
semicolon (libcst.Continue attribute), 65
semicolon (libcst.Del attribute), 65
semicolon (libcst.Expr attribute), 66
semicolon (libcst.Global attribute), 66
semicolon (libcst.Import attribute), 66
semicolon (libcst.ImportFrom attribute), 66
semicolon (libcst.Nonlocal attribute), 67
semicolon (libcst.Pass attribute), 67
semicolon (libcst.Raise attribute), 67
semicolon (libcst.Return attribute), 67
Set (class in libcst), 55
set_metadata() (libcst.BaseMetadataProvider

method), 95
SetComp (class in libcst), 59

should_allow_multiple_passes()
(libcst.codemod.Codemod method), 121

SimpleStatementLine (class in libcst), 76
SimpleStatementSuite (class in libcst), 77
SimpleString (class in libcst), 51
SimpleWhitespace (class in libcst), 83
skip_description (libcst.codemod.TransformSkip at-

tribute), 125
skip_reason (libcst.codemod.TransformSkip attribute),

125
SkipFile (class in libcst.codemod), 123
SkipReason (class in libcst.codemod), 125
skips (libcst.codemod.ParallelTransformResult at-

tribute), 128
Slice (class in libcst), 62
slice (libcst.Subscript attribute), 61
slice (libcst.SubscriptElement attribute), 62
source (libcst.metadata.QualifiedName attribute), 102
star (libcst.Arg attribute), 49
star (libcst.Index attribute), 62
star (libcst.Param attribute), 75
star_arg (libcst.Parameters attribute), 75
star_kwarg (libcst.Parameters attribute), 75
StarredDictElement (class in libcst), 57
StarredElement (class in libcst), 56
start (libcst.FormattedString attribute), 52
start (libcst.metadata.CodeRange attribute), 96
start (libcst.metadata.CodeSpan attribute), 96
start_offset (libcst.metadata.CodegenPartial at-

tribute), 137
step (libcst.Slice attribute), 62
STORE (libcst.metadata.ExpressionContext attribute), 97
store_stub_in_context()

(libcst.codemod.visitors.ApplyTypeAnnotationsVisitor
static method), 132

Subscript (class in libcst), 61
SubscriptElement (class in libcst), 62
Subtract (class in libcst), 79
SubtractAssign (class in libcst), 81
successes (libcst.codemod.ParallelTransformResult at-

tribute), 128

T
target (libcst.AnnAssign attribute), 64
target (libcst.AssignTarget attribute), 73
target (libcst.AugAssign attribute), 65
target (libcst.CompFor attribute), 60
target (libcst.Del attribute), 65
target (libcst.For attribute), 69
targets (libcst.Assign attribute), 64
test (libcst.Assert attribute), 64
test (libcst.CompIf attribute), 61
test (libcst.If attribute), 70
test (libcst.IfExp attribute), 47

Index 151

LibCST Documentation

test (libcst.While attribute), 71
traceback_str (libcst.codemod.TransformFailure at-

tribute), 125
trailing_whitespace (libcst.Decorator attribute), 73
trailing_whitespace (libcst.SimpleStatementLine at-

tribute), 77
trailing_whitespace (libcst.SimpleStatementSuite at-

tribute), 77
TrailingWhitespace (class in libcst), 84
TRANSFORM (libcst.codemod.CodemodTest attribute), 123
transform_module() (in module libcst.codemod), 124
transform_module() (libcst.codemod.Codemod

method), 121
transform_module_impl() (libcst.codemod.Codemod

method), 121
transform_module_impl()

(libcst.codemod.CodemodCommand method),
126

transform_module_impl()
(libcst.codemod.visitors.ApplyTypeAnnotationsVisitor
method), 132

TransformExit (class in libcst.codemod), 125
TransformFailure (class in libcst.codemod), 124
TransformResult (in module libcst.codemod), 124
TransformSkip (class in libcst.codemod), 125
TransformSuccess (class in libcst.codemod), 124
Try (class in libcst), 71
Tuple (class in libcst), 54
type (libcst.ExceptHandler attribute), 74
type_parameters (libcst.ClassDef attribute), 69
type_parameters (libcst.FunctionDef attribute), 70
TypeInferenceProvider (class in libcst.metadata),

104
TypeOf (class in libcst.matchers), 114

U
UnaryOperation (class in libcst), 45
unused_imports (libcst.codemod.visitors.GatherUnusedImportsVisitor

attribute), 133
upper (libcst.Slice attribute), 62

V
validate_types_deep() (libcst.CSTNode method), 41
validate_types_shallow() (libcst.CSTNode

method), 41
value (libcst.AnnAssign attribute), 64
value (libcst.Arg attribute), 49
value (libcst.Assign attribute), 65
value (libcst.Attribute attribute), 44
value (libcst.AugAssign attribute), 65
value (libcst.Comment attribute), 82
value (libcst.DictComp attribute), 59
value (libcst.DictElement attribute), 57
value (libcst.Element attribute), 56

value (libcst.Expr attribute), 65
value (libcst.Float attribute), 50
value (libcst.FormattedStringText attribute), 53
value (libcst.Imaginary attribute), 50
value (libcst.Index attribute), 62
value (libcst.Integer attribute), 50
value (libcst.matchers.MatchMetadata property), 116
value (libcst.Name attribute), 44
value (libcst.Newline attribute), 83
value (libcst.NotEqual attribute), 80
value (libcst.Return attribute), 67
value (libcst.SimpleString attribute), 51
value (libcst.SimpleWhitespace attribute), 84
value (libcst.StarredDictElement attribute), 58
value (libcst.StarredElement attribute), 56
value (libcst.Subscript attribute), 61
value (libcst.Yield attribute), 47
visit() (in module libcst.matchers), 109
visit() (libcst.CSTNode method), 41
visit() (libcst.metadata.MetadataWrapper method), 94
visit() (libcst.Module method), 43
visit_batched() (in module libcst), 91
visit_batched() (libcst.metadata.MetadataWrapper

method), 94
VisitorBasedCodemodCommand (class in

libcst.codemod), 126
VisitorMetadataProvider (class in libcst.metadata),

95

W
warn() (libcst.codemod.Codemod method), 121
warn() (libcst.codemod.ContextAwareVisitor method),

123
warning_messages (libcst.codemod.TransformExit at-

tribute), 125
warning_messages (libcst.codemod.TransformFailure

attribute), 124
warning_messages (libcst.codemod.TransformSkip at-

tribute), 125
warning_messages (libcst.codemod.TransformSuccess

attribute), 124
warnings (libcst.codemod.CodemodContext attribute),

122
warnings (libcst.codemod.ParallelTransformResult at-

tribute), 128
While (class in libcst), 71
whitespace (libcst.EmptyLine attribute), 82
whitespace (libcst.TrailingWhitespace attribute), 84
whitespace_after (libcst.AssignEqual attribute), 81
whitespace_after (libcst.Asynchronous attribute), 47
whitespace_after (libcst.Colon attribute), 81
whitespace_after (libcst.Comma attribute), 82
whitespace_after (libcst.Dot attribute), 82
whitespace_after (libcst.LeftCurlyBrace attribute), 63

152 Index

LibCST Documentation

whitespace_after (libcst.LeftParen attribute), 63
whitespace_after (libcst.LeftSquareBracket attribute),

63
whitespace_after (libcst.LessThanEqual attribute), 80
whitespace_after (libcst.NotEqual attribute), 80
whitespace_after (libcst.NotIn attribute), 80
whitespace_after (libcst.Or attribute), 78
whitespace_after (libcst.ParamSlash attribute), 76
whitespace_after (libcst.Plus attribute), 78
whitespace_after (libcst.Semicolon attribute), 82
whitespace_after (libcst.Subtract attribute), 79
whitespace_after (libcst.SubtractAssign attribute), 81
whitespace_after_arg (libcst.Arg attribute), 49
whitespace_after_as (libcst.AsName attribute), 72
whitespace_after_assert (libcst.Assert attribute), 64
whitespace_after_at (libcst.Decorator attribute), 73
whitespace_after_await (libcst.Await attribute), 47
whitespace_after_class (libcst.ClassDef attribute),

68
whitespace_after_colon (libcst.DictComp attribute),

60
whitespace_after_colon (libcst.DictElement at-

tribute), 57
whitespace_after_def (libcst.FunctionDef attribute),

70
whitespace_after_del (libcst.Del attribute), 65
whitespace_after_else (libcst.IfExp attribute), 48
whitespace_after_equal (libcst.AssignTarget at-

tribute), 73
whitespace_after_except (libcst.ExceptHandler at-

tribute), 74
whitespace_after_expression

(libcst.FormattedStringExpression attribute),
53

whitespace_after_for (libcst.CompFor attribute), 61
whitespace_after_for (libcst.For attribute), 69
whitespace_after_from (libcst.From attribute), 47
whitespace_after_from (libcst.ImportFrom at-

tribute), 66
whitespace_after_func (libcst.Call attribute), 49
whitespace_after_global (libcst.Global attribute),

66
whitespace_after_if (libcst.IfExp attribute), 48
whitespace_after_import (libcst.Import attribute),

66
whitespace_after_import (libcst.ImportFrom at-

tribute), 67
whitespace_after_in (libcst.CompFor attribute), 61
whitespace_after_in (libcst.For attribute), 69
whitespace_after_indicator (libcst.Annotation at-

tribute), 72
whitespace_after_lambda (libcst.Lambda attribute),

48
whitespace_after_name (libcst.ClassDef attribute), 68

whitespace_after_name (libcst.FunctionDef at-
tribute), 70

whitespace_after_nonlocal (libcst.Nonlocal at-
tribute), 67

whitespace_after_param (libcst.Param attribute), 76
whitespace_after_raise (libcst.Raise attribute), 67
whitespace_after_return (libcst.Return attribute),

67
whitespace_after_star (libcst.Arg attribute), 49
whitespace_after_star (libcst.Index attribute), 62
whitespace_after_star (libcst.Param attribute), 76
whitespace_after_test (libcst.If attribute), 71
whitespace_after_type_parameters

(libcst.ClassDef attribute), 69
whitespace_after_type_parameters

(libcst.FunctionDef attribute), 70
whitespace_after_value (libcst.Subscript attribute),

62
whitespace_after_while (libcst.While attribute), 71
whitespace_after_with (libcst.With attribute), 72
whitespace_after_yield (libcst.Yield attribute), 47
whitespace_before (libcst.AssignEqual attribute), 81
whitespace_before (libcst.Colon attribute), 81
whitespace_before (libcst.Comma attribute), 82
whitespace_before (libcst.CompFor attribute), 61
whitespace_before (libcst.CompIf attribute), 61
whitespace_before (libcst.Dot attribute), 82
whitespace_before (libcst.LessThanEqual attribute),

79
whitespace_before (libcst.NotEqual attribute), 80
whitespace_before (libcst.NotIn attribute), 80
whitespace_before (libcst.Or attribute), 78
whitespace_before (libcst.RightCurlyBrace attribute),

63
whitespace_before (libcst.RightParen attribute), 63
whitespace_before (libcst.RightSquareBracket at-

tribute), 63
whitespace_before (libcst.Semicolon attribute), 82
whitespace_before (libcst.Subtract attribute), 79
whitespace_before (libcst.SubtractAssign attribute),

81
whitespace_before_args (libcst.Call attribute), 49
whitespace_before_as (libcst.AsName attribute), 72
whitespace_before_colon (libcst.ClassDef attribute),

69
whitespace_before_colon (libcst.DictComp at-

tribute), 60
whitespace_before_colon (libcst.DictElement at-

tribute), 57
whitespace_before_colon (libcst.Else attribute), 74
whitespace_before_colon (libcst.ExceptHandler at-

tribute), 74
whitespace_before_colon (libcst.Finally attribute),

74

Index 153

LibCST Documentation

whitespace_before_colon (libcst.For attribute), 69
whitespace_before_colon (libcst.FunctionDef at-

tribute), 70
whitespace_before_colon (libcst.Try attribute), 71
whitespace_before_colon (libcst.While attribute), 71
whitespace_before_colon (libcst.With attribute), 72
whitespace_before_else (libcst.IfExp attribute), 48
whitespace_before_equal (libcst.AssignTarget

attribute), 73
whitespace_before_expression

(libcst.FormattedStringExpression attribute),
53

whitespace_before_from (libcst.From attribute), 47
whitespace_before_if (libcst.IfExp attribute), 48
whitespace_before_import (libcst.ImportFrom

attribute), 66
whitespace_before_in (libcst.CompFor attribute), 61
whitespace_before_in (libcst.For attribute), 69
whitespace_before_indicator (libcst.Annotation at-

tribute), 72
whitespace_before_params (libcst.FunctionDef at-

tribute), 70
whitespace_before_test (libcst.CompIf attribute), 61
whitespace_before_test (libcst.If attribute), 71
whitespace_before_value (libcst.StarredDictElement

attribute), 58
whitespace_before_value (libcst.StarredElement at-

tribute), 56
whitespace_between (libcst.ConcatenatedString

attribute), 52
whitespace_between (libcst.NotIn attribute), 80
WhitespaceInclusivePositionProvider (class in

libcst.metadata), 96
With (class in libcst), 71
with_changes() (libcst.CSTNode method), 41
with_deep_changes() (libcst.CSTNode method), 42
WithItem (class in libcst), 76
wrapper (libcst.codemod.CodemodContext attribute),

122

Y
Yield (class in libcst), 47

Z
ZeroOrMore() (in module libcst.matchers), 118
ZeroOrOne() (in module libcst.matchers), 119

154 Index

	Why LibCST?
	Abstract Syntax Trees (AST)
	Concrete Syntax Trees (CST)
	LibCST

	Motivation
	Exact Representation
	Ease of Traversal
	Ease of Modification
	Well Tested

	Parsing and Visiting
	Parse Source Code
	Example: add typing annotation from pyi stub file to Python source

	Build Visitor or Transformer
	Generate Source Code

	Working with Metadata
	Providing Metadata
	Line and Column Metadata

	Accessing Metadata
	Using the MetadataWrapper
	Using Dependency Declaration

	Scope Analysis
	Warn on unused imports and undefined references
	Automatically Remove Unused Import

	Working with Matchers
	Basic Matcher Usage
	Matcher Decorators

	Working With Codemods
	Setting up and Running Codemods
	Writing a Codemod
	Testing Codemods

	Best Practices
	Avoid isinstance when traversing
	Prefer updated_node when modifying trees
	Provide a config when generating code from templates

	Parsing
	Syntax Errors

	Nodes
	CSTNode
	Module
	Expressions
	Names and Object Attributes
	Operations and Comparisons
	Control Flow
	Lambdas and Function Calls
	Literal Values
	Numbers
	Strings
	Formatted Strings (f-strings)

	Collections
	Simple Collections
	Simple Collection Elements
	Dictionaries
	Dictionary Elements

	Comprehensions
	Subscripts and Slices
	Parenthesis, Brackets, and Braces

	Statements
	Simple Statements
	Compound Statements
	Helper Nodes
	Statement Blocks

	Operators
	Unary Operators
	Boolean Operators
	Binary Operators
	Comparison Operators
	Augmented Assignment Operators

	Miscellaneous
	Whitespace
	Maybe Sentinel

	Visitors
	Visit and Leave Helper Functions
	Traversal Order
	Batched Visitors

	Metadata
	Metadata APIs
	Accessing Metadata
	Providing Metadata

	Metadata Providers
	Position Metadata
	Expression Context Metadata
	Scope Metadata
	Qualified Name Metadata
	Parent Node Metadata
	File Path Metadata
	Type Inference Metadata

	Matchers
	Matcher APIs
	Functions
	Decorators
	Traversal Order

	Matcher Types
	Concrete Matchers
	Special Matchers
	Sequence Wildcard Matchers

	Codemods
	Codemod Base
	Execution Interface
	Command-Line Support
	Command-Line Toolkit
	Library of Transforms

	Helpers
	Construction Helpers
	Transformation Helpers
	Traversing Helpers

	Experimental APIs
	Reentrant Code Generation

	Indices and tables
	Privacy Policy and Terms of Use
	Index

